Показатели, характеризующие безотказность. Понятие и классификация судебных экспертиз

30.12.2023

Качество - Надёжность - Безопасность (КНБ) - как составляющие системного менеджмента. Качество

В условиях открытых рыночных отношений принципиально меняются приоритеты и расстановка акцентов, определяющих эффективность деятельности и имидж предприятий. Сегодня нельзя рассматривать и оценивать их деятельность без учета вопросов обеспечения профессиональной, промышленной и экологической безопасности. Способность конкурировать все больше зависит от качества оказываемых услуг, культуры и дисциплины труда, надёжности предприятия.


Учитывая это, современная политика на предприятии должна быть ориентирована не только на отдельные составляющие (безопасность, качество, надежность), но и одновременно на их комплексное решение. Только при условии реализации политики, адекватной современным требованиям, предприятие может рассчитывать на успех и имеет шансы закрепить свои позиции в рыночном поле.


Учитывая это, сегодня ключевыми категориями системы корпоративного управления при характеристике любого предприятия, Организации, компании становятся понятия - «качество услуг и продукции», «надёжность функционирования процессов и предприятия», «безопасность человека (персонала)». Эти категории настолько тесно связаны друг с другом, что практически трудно обозначить, что из них является первичным: или качество и надежность являются необходимыми категориями и условиями безопасности, или наоборот - безопасность и надежность являются показателями (свойствами) качества, формирующими его.


Все они важны как с точки зрения социальной, экономической значимости, успешности деятельности, так и для формирования внутреннего и внешнего имиджа предприятия, как надежного, профессионально и экологически безопасного, социально ответственного партнёра, обеспечивающего высокое качество оказываемых услуг. И если ранее эти понятия рассматривались независимо один от другого, то сейчас эти категории следует рассматривать во взаимосвязи. В этом особенность и в этом заключается комплексность и системность подхода к осуществлению производственной деятельности на предприятии на современном этапе.

Качество

Что общего между безопасностью и качеством, между качеством и надёжностью? Ведь проблема качества появилась не сегодня, она существует давно и существует вполне самостоятельно. Интенсивное решение качественной проблематики приходится на 80-ые годы прошлого столетия. В 70-80-х годах в СССР даже существовало такое понятие как «борьба» за качество, этой борьбе была посвящена одна из пятилеток («пятилетка качества»), проводились «дни качества», на тысячах предприятий существовали комплексные системы управления качеством продукции и т.д.


В настоящее время во всем мире качество в самом широком смысле завоевывает все более прочные позиции во всех сферах бизнесдеятель-ности. Подтверждением служит тот факт, что стандарты серии ISO 9000, как самые известные, являются первоосновой для систем менеджмента других сфер деятельности и внедряются в 157 странах - членах международной организации по стандартизации.


В чем же отличие сегодняшней «борьбы» за качество от прежней? В чем и как эти понятия проявляются на практике?


С той поры, когда эта работа на отечественных предприятиях активно проводилась, а она бесспорно дала свои положительные результаты, прошло достаточно много времени, многое из того уже забыто и растеряно, но одновременно с этим многое приняло более совершенные формы, появились новые подходы. Ведь понятие качества тогда и сейчас существенно различаются.


Сегодня под качеством понимается, в первую очередь, соответствие требованиям стандартов, надёжности, потребностям всех заинтересованных сторон, в том числе, удовлетворенность клиентов, ряд других аспектов, связанных с трудовой деятельностью. Если ранее речь шла о качестве продукции и системах управления качеством продукции, то сегодня речь идет о тотальном (всеобщем) управлении качеством в английской терминологии - Total Quality Management (TQM), включающем в себя качество продуктов труда, качество процессов, деятельности, менеджмента, наконец, качество фирмы (предприятия).


И безусловно категория качества является ключевой составляющей профессиональной, промышленной и экологической безопасности, т.к. идеология обеспечения безопасности тесно связана с идеологией формирования высококачественных услуг и продукции. Более того, современная концепция управления безопасностью базируется по сути практически на принципах менеджмента качества.


Поэтому в контексте данной темы понятие качества рассматривается не вообще, а во взаимосвязи с безопасностью, более того, как необходимое условие безопасности. Это обусловлено тем, что категории, которые формируют качество, одновременно являются категориями безопасности. К примеру, к ним относятся: передовая (совершенная, безопасная) технология, неукоснительное отношение к установленным правилам, культура и дисциплина труда, обязательность и взаимоответственность во взаимоотношениях с партнерами и собственными работниками предприятия и т.д.


С другой стороны, известно, что надежность также проявляется как некоторое свойство или качество, которым обладает объект, и относится к категории безопасности. Поэтому не случайно понятия надежный и безопасный переводятся на английский язык одним словом «Safe».


Что же предусматривает внедрение этих категорий, в чем заключаются сущность и исходные принципы, на которых должна строиться работа предприятий в этом направлении?


В первую очередь, предусматривается продолжение той работы, которая велась в каждой из этих областей, использование тех наработок и принципов, на которых она строилась ранее, а также опыта новейшей международной практики и международных стандартов.


Вот только некоторые из этих принципов.

Первый принцип качества

Системный подход к менеджменту охраны труда и качеству социально-производственных процессов: создание целостной системы для достижения целевых задач наиболее эффективным способом, организация взаимосвязи и взаимодействия субъектов и объектов управления, распределение ролей и обязанностей персонала, непрерывное совершенствование системы на основе оценки фактического состояния и последующей корректировки действий; обоюдовыгодные и взаимоответственные отношения с партнерами и работниками.


Применение этого принципа обычно сводится к следующему: открытому общению, обмену информацией и планами на будущее, создание совместных развивающих действий, признание улучшений и достижений партнеров; в числе выгод такого подхода - увеличение возможностей получения прибылей для партнеров и формирование предпосылок для безопасного производства работ и процессов.

Второй принцип качества

Общим и главным звеном системы, объединяющей в себе триединые понятия (качества, надежности и безопасности), является человек, его управляющая, организующая и исполнительская роль.


Согласно TQM персонал предприятия или компании представляет наивысшую ценность и по этим причинам участие работников всех категорий в их деятельности является необходимым условием эффективного функционирования системы. Поэтому второй принцип, как уже отмечалось ранее, заключается в вовлечении людей в процессы управления и адекватного исполнения, использование их способностей и потенциала по отношению к задачам, целям и интересам предприятия, что выражается в понимании людьми важности их личного ролевого участия в решении проблем, принятия ими ответственности за эти проблемы и возможные пути их решения.


Как и любая другая, система управления КНБ будет эффективно функционировать при определенных условиях. К ним относятся следующие.


Первым условием успешного действия системы, как уже указывалось ранее, является вовлеченность в процессы функционирования предприятия (управление, организация, исполнение) всего персонала. Этим должны заниматься все: каждый человек, каждая служба в своей области, совместные действия которых слагаются в общую политику предприятия. При этом для каждого субъекта должны быть четко обозначены соответствующими регулирующими документами ответственность, полномочия и порядок их взаимодействия.


Однако важно, чтобы этим занимались на каждом рабочем месте профессионально. Поэтому персонал должен владеть системными методами, формирующими менеджмент деятельности предприятия, а для этого его необходимо учить. То-есть, обучение и профессиональная компетентность являются вторым необходимым условием.

Третий принцип качества

Для того, чтобы привлечь персонал не только к участию в этом процессе, но и к его совершенствованию, людей необходимо мотивировать, используя для этой цели самые различные формы, более того, создать предпосылки для их самомотивации. Система уравнительной компенсации, где все получают одинаково мало, вытесняется экономическим стимулированием индивидуального вклада в общий результат.


И последнее. Должны быть назначены лица - ответственные за функционирование системы и лица, осуществляющие контроль. И здесь важная роль принадлежит службе охраны труда, т.к. по сути это функции, которые должны осуществлять специалисты этой службы. В этой связи представляется целесообразным включать в штатные расписания, по крайней мере, в крупных предприятиях (объединениях, компаниях), выполняющих работы или процессы повышенной опасности, должность


специалиста (инженера, менеджера) по системному управлению охраной труда, в должностные обязанности которого будет (должно) входить практическое внедрение интегрированной системы управления безопасностью, документирование процессов, организация результативного функционирования Системы, контроль за ее функционированием, внедрение методов управления рисками, реализация лидерских устремлений предприятия в области ОТ.


В современных условиях немаловажным стимулом для внедрения инновационных технологий и решений, для их успешной реализации является экономическая сторона вопроса. Иначе, что это в конечном итоге дает предприятию с точки зрения бизнеса? К сожалению, не все поддается простой количественной оценке, тем более, что понятия безопасности, качества и надежности являются не только и не столько экономическими категориями, сколько социальными.


Вследствие неудовлетворительного состояния охраны труда становятся инвалидами и гибнут в большинстве своем вполне трудоспособные, нередко молодые люди; из-за плохого качества снижается спрос на продукцию, нарушаются сроки поставки, уходят партнеры, в ненадежные предприятия на обновление техники и технологии никто не будет вкладывать средства, а значит предприятие обречено на неуспех.


И наоборот, предприятие, которое является во всех отношениях надежным, обеспечивает высокую культуру и качество процессов, услуг и продукции, гарантирующее безопасность, становится привлекательным для инвесторов, партнеров, а это значит - возможность внедрения передовых технологий, улучшение условий труда, увеличение объемов производства, рост материальных и социальных благ для работников, социальная стабильность и комфортность в трудовом коллективе, в конечном итоге - залог успешности, а это уже немало.


Мировая практика свидетельствует, что компании, принявшие и реализующие такой подход в системах менеджмента, который в большинстве случаев является частью всей философии менеджмента всеобщего качества (TQM), достигают особенно высоких показателей эффективности.


Учитывая это, какие задачи стоят перед менеджерами предприятия?


Основная задача состоит в формировании у персонала идеологии, адекватной требованиям новейшей системы менеджмента, к числу ключевых факторов которой относятся безопасность, качество, надежность. На это должны быть направлены все формы психологического влияния, обучения, тренинга, пропаганды.

Одной из основных характеристик сложных технических систем является их надежность. Теория надежности получила значительное развитие и практическое применение в технике.

Надежность - это свойство объекта сохранять во времени в установленных пределах значения всех параметров, позволяющих выполнять требуемые функции. Для количественной оценки надежности применяют вероятностные величины. Те изменения, которые происходят с течением времени в любой технической системе и приводят к потере ее работоспособности, связаны с внешними и внутренними воздействиями, которым она подвергается. В процессе эксплуатации на систему действуют все виды энергии, что может привести к изменению параметров отдельных элементов, механизмов и системы в целом. При этом имеется три основных источника воздействий:

  • - действие энергии окружающей среды, включая человека, исполняющего функции оператора или ремонтника;
  • - внутренние источники энергии, связанные как с рабочими процессами, протекающими в технической системе, так и с работой отдельных элементов системы;
  • - потенциальная энергия, которая накоплена в материалах и деталях узлов системы в процессе их изготовления (внутренние напряжения в отливке, монтажные напряжения).

При работе технического объекта наблюдаются следующие основные виды энергии, влияющие на его работоспособность и надежность (рис. 6.4).

Механическая энергия, которая не только передается по всем элементам системы в процессе работы, но и воздействует на нее в виде статических или динамических нагрузок от взаимодействия с внешней средой.

Тепловая энергия действует на систему и ее части при колебаниях температуры окружающей среды, при осуществлении рабочего процесса (особенно сильные тепловые воздействия имеют место при работе двигателей и ряда технологических машин), при работе приводных механизмов, электротехнических и гидравлических устройств.

Химическая энергия также оказывает влияние на работу системы. Например, влага, содержащаяся в воздухе может вызвать коррозию отдельных узлов системы. Если же оборудование системы работает в условиях агрессивных сред (оборудование химической промышленности, суда и др.), то химические воздействия вызывают процессы, приводящие к разрушению отдельных элементов и узлов системы.

Ядерная (атомная) энергия, выделяющаяся в процессе превращения атомных ядер, может воздействовать на материалы (особенно в космосе), изменяя их свойства.

Электромагнитная энергия в виде радиоволн (электромагнитных колебаний) пронизывает все пространство вокруг объекта и может оказать влияние на работу электронной аппаратуры.

Биологические факторы также могут влиять на работоспособность системы в виде микроорганизмов, которые не только разрушают некоторые виды пластмасс, но даже могут воздействовать на металл.

Рис. 6.4.

Таким образом, все виды энергии действуют на техническую систему и ее механизмы, вызывают в ней целый ряд нежелательных процессов, создают условия для ухудшения ее технических характеристик.

Нормальная эксплуатация эрготехнической системы характеризуется определенной степенью надежности, представляющей собой комплексную вероятностную характеристику успешного выполнения системой требуемых целевых функций при сохранении ею своих эксплуатационных показателей в заданных пределах в течение необходимого времени. Теория надежности позволяет оценивать срок службы, по окончании которого техническое средство вырабатывает свой ресурс и должно подвергнуться капитальному ремонту, модернизации или замене. Одно из основных понятий теории надежности - отказ.

Отказ - это нарушение работоспособного состояния технического устройства из-за прекращения функционирования или из-за резкого изменения его параметров. В теории надежности оценивается вероятность отказа, то есть вероятность того, что техническое средство откажет в течение заданного времени работы. Изучение причин, вызывающих отказы объектов, определение закономерностей, которым они подчиняются, разработка метода проверки надежности изделий и способов контроля надежности, методов расчетов и испытаний, изыскание путей и средств повышения надежности - являются предметом исследований надежности. При изучении вопросов надежности рассматривают самые разнообразные объекты - изделия, сооружения, системы с их подсистемами. Надежность изделия зависит от надежности его элементов, и чем выше их надежность, тем выше надежность всего изделия.

Обеспечение надежности систем охватывает самые различные аспекты человеческой деятельности. Надежность является одной из важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем (рис. 6.5).

Недостаточная надежность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертвами.

Как следует из приведенного выше определения надежности, наиболее значимой для успешного функционирования любой технической системы и выполнения ею заданных функций является сохранение ее работоспособности.


Рис. 6.5.

Работоспособность как состояние системы означает способность выполнять требуемые функции с заданными рабочими параметрами. В свою очередь, наличие работоспособности системы в течение всего времени ее эксплуатации предполагает безотказность ее функционирования, а также косвенно связано и с остальными свойствами эксплуатационной надежности. Надежность (работоспособность) объекта является комплексным свойством, ее оценивают по четырем количественным показателям - безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.

Безотказность - свойство объекта сохранять свою работоспособность в течение заданного времени без отказов и вынужденных перерывов.

Долговечность - свойство объекта сохранять работоспособное состояние до предельного состояния с необходимыми перерывами для регламентного обслуживания и ремонта.

Ремонтопригодность - свойство приспособленности объекта к предупреждению, выявлению и устранению отказов ее работоспособности путем проведения регламентного технического обслуживания и ремонта.

Сохраняемость - свойство объекта сохранять требуемые эксплуатационные показатели в течение и после установленного срока ее хранения или транспортировки.

Объекты подразделяют на невосстанавливаемые, которые не могут быть восстановлены потребителем и подлежат замене (например, электрические лампочки, подшипники, резисторы и т. д.), и восстанавливаемые, которые могут быть восстановлены потребителем (например, телевизор, автомобиль, трактор, станок и т. д.).

Разработана классификация отказов с позиций изучения характера и природы отказов, влияния различных факторов на их возникновение (рис. 6.6).

  • 1. По условиям возникновения разделяют отказы в нормальных и ненормальных (экстремальных) условиях. Ненормальные условия имеют место вследствие ошибок персонала, стихийных бедствий или при других чрезвычайных ситуациях.
  • 2. По причинам возникновения выделяют отказы, не связанные с разрушением и обусловленные разрушением объекта.
  • 3. По характеру возникновения: внезапные отказы , связанные с резким изменением основных параметров, и постепенные отказы под действием случайных факторов, обусловленные медленно протекающими необратимыми процессами
  • 4. По степени влияния на работоспособность: полные и частичные отказы. Последние связаны с «частичной» потерей работоспособности системы, т. е. с пониженным уровнем функционирования. Такие отказы возникают в системах, имеющих большое количество автономных элементов. При отказе некоторых большинство элементов остается работоспособными.
  • 5. По признакам проявления: явные и неявные отказы. Возникновение явного отказа обнаруживается органолептическими методами. При неявных отказах для их обнаружения требуется применение специальных приборов или устройств или значительный опыт и умение персонала.
  • 6. По взаимосвязи между собой: независимые и зависимые отказы , когда появление одного отказа влечет за собой возникновение других. Взаимосвязь отказов может привести к их лавинообразному нарастанию.
  • 7. По последствиям различают: отказы опасные и безопасные для здоровья и жизни персонала и для окружающей среды; тяжелые отказы , ведущие к значительным материальным и финансовым и другим затратам и потерям; легкие отказы почти без потерь.
  • 8. По способу устранения выделяют: отказы, устраняемые заменой элементов, регулировкой, чисткой и самоустраняющиеся отказы или сбои.
  • 9. По сложности устранения: простые и сложные отказы , требующие специалистов высокой квалификации и значительных трудозатрат.

  • 0- отказ элемента,
  • 1- первичный отказ;
  • 2- вторичные отказы;
  • 3- ошибочные команды,
  • 4- элементы в заданных режимах работы,
  • 5- избыточные напряжения;
  • 6- ошибочные команды;
  • 7- естественное старение;
  • 8- соседние элементы,
  • 9- окружающая среда;
  • 10- персонал предприятия

Рис. 6.6. Характеристики отказов элементов технической системы

  • 10. По частоте возникновения: на случайные (единичные) и неслучайные (систематические) отказы . Случайные отказы вызваны непредусмотренными нагрузками, скрытыми дефектами материалов, погрешностями изготовления, ошибками обслуживающего персонала. Неслучайные отказы - это закономерные явления, вызывающие постепенное накопление повреждений, связанные с влиянием среды, времени, температуры, облучения и т. п.
  • 11. Но возможности устранения: устранимые и неустранимые отказы , при возникновении которых восстановление работоспособности системы технически невозможно или экономически неоправданно.
  • 12. По происхождению: конструктивные отказы , обусловленные недостатками конструкции; технологические отказы - недостатками технологического процесса изготовления и сборки деталей и узлов и эксплуатационные отказы , связанные только с условиями эксплуатации.

В зависимости от возможности прогнозировать момент наступления отказа все отказы подразделяют на внезапные (поломки, заедания, отключения) и постепенные (износ, старение, коррозия). Отказы, приводящие к тяжелым последствиям, отнесены к категории «критических ».

К авариям относятся все отказы, наступление которых связано с угрозой для людей и окружающей среды, а также с серьезным экономическим и моральным ущербом. На надежность технических систем оказывают влияние три группы факторов: конструктивные, технологические и эксплуатационные.

К конструктивным факторам относятся: принципиальная схема машины, качество материалов, форма и размеры деталей, запас прочности, применяемые методы расчета на прочность, конструктивные концентраторы напряжений в деталях

Технологические факторы - факторы, связанные с процессом получения стабильных свойств материалов, обеспечивающих стабильность структуры, физико-механических свойств, прочности; факторы, связанные с формообразованием заготовки, методами обработки и сборки; методы и режимы механической, термической, химико-термической обработки; геометрия режущего инструмента; организация технического контроля по этапам технологического процесса.

Эксплуатационные факторы - характер нагружения, скорости, давления, температура среды, влажность среды, виды и способы смазки, соблюдение правил технической эксплуатации, техническое обслуживание, качество ремонта, квалификация ремонтно-эксплуатационного персонала, техническая оснащенность ремонтных служб и др.

Рис. 4.1.1. Основные свойства технических систем

В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Таким образом:
1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности.

Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы).

Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость.

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Ремонтопригодность - свойство объекта быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта.

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов.

Сохраняемость - свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки.

Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

Показатели безотказности и ремонтопригодности
Наработка до отказа - вероятность того, что в пределах заданной наработки отказ объекта не возникнет (при условии работоспособности в начальный момент времени).
Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа".

Средняя наработка до отказа - математическое ожидание случайной наработки объекта до первого отказа.
Средняя наработка между отказами - математическое ожидание случайной наработки объекта между отказами.

Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению.
Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки.

Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.
Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта).

Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени.

Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.

Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и начиная с этого момента времени будет работать безотказно в течение заданного времени.

Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности.

Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени.
Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс.

Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.
Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени.

Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.

Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

Показатели долговечности и сохраняемости

Надежность это свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования. Это качество, простирающееся во времени . Поэтому понятие надежности близко к понятию качества, а потому проблемы управления качеством непосредственно отражаются в представлении о надежности.

Надежность – это объективное свойство изделия, надежность можно измерить. Для измерения надежности введены понятия "отказ", "вероятность безотказной работы", "интенсивность отказов" и др. Понятия об отказе и безотказности являются одними из основных в теории надежности. Обычно под безотказностью понимают свойство изделий сохранять работоспособность в течение длительного времени. Отказ – это полная или частичная утрата изделием работоспособности.

Американские авторы Д. Ллойд и М. Липов в книге "Надежность" пишут : "Надежность сказывается на стоимости, на временных затратах, психологически – в виде неудобств, а в определенных случаях грозит также безопасности людей и нации. Обычно потери за счет ненадежности представляют собой не только стоимость выходящего из строя агрегата, но также и стоимость связанного с ним оборудования, которое портится или разрушается в результате отказа... Классическим примером психологического эффекта ненадежности являются печальной памяти спутники "Авангард". Соединенные Штаты, остро переживая успехи России, запустившей "Спутник-1", попытались вступить в соревнование, используя для этой цели почти нс испытанную ракету, которой и пришлось работать почти на пределе своих возможностей. Неудачи и последовавшие за этим уныние и потеря престижа были очень серьезны".

У американского писателя, поэта и ученого XIX в. Оливера Холмса есть стихотворение "Шедевр священника, или Замечательная одноконная коляска". В нем говорится о священнике, который построил коляску, замечательную тем, что все ее части имели абсолютно одинаковую прочность. Эта коляска прослужила ровно 100 лет и развалилась прямо по дороге. Все детали сломались одновременно .

Изделие, которое бы разрушалось таким образом, – это мечта любого инженера и специалиста по управлению качеством. Но реальные механизмы разрушаются случайным образом и в случайное время. Поэтому для оценки надежности применяют статистические методы и вероятностный аппарат математики. Вероятность безотказной работы – это вероятность того, что в данном интервале времени или в пределах заданной наработки не произойдет отказа изделия.

Для оценки надежности существует много числовых характеристик. Например, коэффициент готовности – это вероятность того, что изделие окажется работоспособным в заданные или случайные моменты, – время, в течение которого изделие работоспособно, отнесенное ко времени его функционирования.

потребителем подразумевает время, в течение которого товар с гарантией производителя сохраняет свои параметры качества, ожидаемые потребителем, и потому это время обычно называют гарантированным сроком службы продукта.

Гарантированный производителем срок службы продукта называют долговечностью товара. Долговечность зависит от возможностей ремонта, после которого его параметры качества могут быть восстановлены, т.е. от ремонтопригодности продукта.

По реальному сроку службы потребитель судит в основном о качестве приобретенного им товара, что сказывается в дальнейшем на его отношении к соответствующему производителю и в конечном итоге на имидже этого производителя в глазах потребителя .

Наибольшее распространение в исследованиях надежности получил показатель интенсивность отказов (λ ):

где n – число выбывших из строя изделий; N – общее число

изделий; – среднее время испытаний.

Среднее время испытаний определяется по формуле

где – число изделий в испытательной группе; – продолжительность испытания данной группы.

Если количество изделий, выбывших из строя, превышает 5-10%, то в расчетвводятся коррективы:

(2.3)

где – количество отказавших изделий в данной группе;

– количество отказов за одно и то же время испытаний;

Продолжительность испытаний для вывода изделия из строя.

Для расчета средней интенсивности отказов важно выбрать правильный интервал времени, так как обычно плотность отказов меняется во времени.

ПРИМЕР 2.1

При испытании некоторой детали электронной аппаратуры λ может определяться через 1000–2000 ч. Проводится испытание 4 групп по 250 изделий в течение 2000 ч.

Результаты испытаний таковы:

Рассчитаем :

Всего за время испытаний вышло из строя 20 изделий (7 + 5 + + 4 + 4).

Детали и узлы могут выходить из строя из-за дефектов производства и по другим причинам.

При постоянном уровне частоты отказов за единицу времени распределение вероятностей промежутков безотказной работы выражается показательным законом распределения эксплуатационной долговечности.

Основными параметрами качества для изделий являются:

  • – функциональные характеристики – соответствие изделия назначению;
  • – надежность – количество ремонтопригодных отказов за срок службы;
  • – долговечность (срок службы) – показатель, связанный с надежностью;
  • – бездефектность – количество обнаруженных потребителем дефектов.

Надежность представляет собой понятие, связанное, прежде всего, с техникой. Его можно трактовать как безотказ -

ностъ, способность выполнять определенную задачу или как вероятность выполнения определенной функции или функций в течение определенного времени и в определенных условиях .

Как техническое понятие "надежность" представляет собой вероятность (в математическом смысле) удовлетворительного выполнения определенной функции. Поскольку надежность представляет собой вероятность, для ее оценки применяются статистические характеристики. Результаты измерения надежности должны включать данные об объеме выборок, о доверительных границах, о процедурах выборочного исследования и др.

В технике применяется также понятие "удовлетворительное выполнение". Точное определение этого понятия связано с определением его противоположности – "неудовлетворительного выполнения" или "отказа".

Общему понятию "надежности" противостоит понятие "собственно надежность" образца оборудования, которая представляет собой вероятность безотказной работы в соответствии с заданными техническими условиями при установленных проверочных испытаниях в течение требуемого промежутка времени. При испытаниях надежности измеряется собственно надежность. Она представляет но существу "операционную надежность" оборудования и является следствием двух факторов: собственно надежности и эксплуатационной надежности. Эксплуатационная надежность, в свою очередь, обусловлена соответствием аппаратуры ее использованию, порядком и способом оперативного применения и обслуживания, квалификацией персонала, возможностью ремонта различных деталей, факторами окружающей среды и др.

На каждую характеристику, подлежащую измерению, в технических условиях задается допуск, нарушение которого рассматривается как "отказ". Допуск, определяющий отказ, должен быть оптимальным с необходимой надбавкой на износ деталей, т.е. он должен быть шире нормального заводского допуска. Поэтому заводские допуски устанавливают с учетом того, что детали со временем изнашиваются.

Охарактеризуем основные понятия, связанные с надежностью.

  • 1. Исправность – состояние изделия, при котором оно в данный момент времени соответствует всем требованиям, установленным как в отношении основных параметров, характеризующих нормальное выполнение заданных функций, так и в отношении второстепенных параметров, характеризующих удобства эксплуатации, внешний вид и т.п.
  • 2. Неисправность состояние изделия, при котором оно в данный момент времени не соответствует хотя бы одному из требований, характеризующих нормальное выполнение заданных функций.
  • 3. Работоспособность состояние изделия, при котором оно в данный момент времени соответствует всем требованиям, установленным в отношении основных параметров, характеризующих нормальное выполнение заданных функций.
  • 4. Отказ – событие, заключающееся в полной или частичной утрате изделием его работоспособности.
  • 5. Полный отказ – отказ, до устранения которого использование изделия по назначению становится невозможным.
  • 6. Частичный отказ отказ, до устранения которого остается возможность частичного использования изделия.
  • 7. Безотказность свойство изделия непрерывно сохранять работоспособность в течение некоторого интервала времени.
  • 8. Долговечность свойство изделия сохранять работоспособность (с возможными перерывами для технического обслуживания и ремонта) до разрушения или другого предельного состояния. Предельное состояние может устанавливаться по изменениям параметров, по условиям безопасности и т.п.
  • 9. Ремонтопригодность свойство изделия, выражающееся в его приспособленности к проведению операций технического обслуживания и ремонта, т.е. к предупреждению, обнаружению и устранению неисправностей и отказов.
  • 10. Надежность (в широком смысле ) свойство изделия, обусловленное безотказностью, долговечностью и ремонтопригодностью самого изделия и его частей и обеспечива

ющее сохранение эксплуатационных показателей изделия в заданных условиях.

  • 11. Восстанавливаемость – свойство изделия восстанавливать начальные значения параметров в результате устранения отказов и неисправностей, а также восстанавливать технический ресурс в результате проведения ремонтов.
  • 12. Сохраняемость – свойство изделия сохранять исправность и надежность в определенных условиях и транспортировки.

Для некоторых изделий, относительно несложных по конструкции, понятие "отказа" можно ввести совершенно четко. Например, электролампочка или горит, или не горит.

На практике иногда обращают особое внимание на совершенствование основных узлов изделия, упуская из виду, что причиной ненадежности и последующей аварии могут быть конструкционные узлы, которые носят вспомогательный характер.

Чтобы измерить (оценить ) надежность, необходимо испытать аппарат, который описывал бы случайные события или случайные процессы. Речь идет о теории вероятностей и математических дисциплинах. За основной количественный показатель надежности принимают вероятность безотказной работы изделия в течение заданного промежутка времени.

Вероятность безотказной работы – это вероятность того, что в данном интервале времени или в пределах заданной наработки нс произойдет отказа изделий. С введением этого понятия появляется возможность измерять надежность и сравнивать надежность изделия по этому показателю. Вероятность безотказной работы одного и того же изделия не одинакова в разные моменты его эксплуатации.

Для оценки надежности существует множество характеристик, в частности: вероятность безотказной работы; коэффициент готовности (вероятность того, что изделие окажется работоспособным в заданный или случайный момент); коэффициент использования времени (время, в течение которого изделие работоспособно, отнесенное ко времени его функционирования).

Время безотказной эксплуатации товара потребителем подразумевает время, в течение которого товар с гарантией производителя сохраняет свои параметры качества, ожидаемые потребителем, и поэтому это время обычно называют гарантированным сроком службы изделия.

Гарантированный срок службы товара, как правило, меньше его действительного срока службы, который характеризуется долговечностью товара.

Долговечность зависит от возможностей ремонта, после которого параметры качества товара восстановлены, т.е. зависит от ремонтопригодности. Долговечность характеризует реальный срок службы товара. По реальному сроку службы потребитель судит о качестве приобретаемого товара, что сказывается в дальнейшем на его отношении к производителю и в конечном итоге на имидже этого производителя в глазах потребителя.

В то же время гарантированный срок службы товара имеет существенное значение в момент его приобретения по сравнению с аналогичным продуктом конкурентов, а неукоснительность последующего выполнения всех предварительно оговоренных условий, гарантий при приобретении товара определяет отношение потребителя к надежности не только поставщика (продавца), по и производителя.

Если в течение гарантированного срока службы значение параметров качества не соответствует ожиданиям потребителя, которые гарантирует ему производитель, то ответственность за это несет производитель товара (поставщик), который должен за свой счет произвести ремонт, а в случае невозможности ремонта заменить некачественный товар на качественный.

Производитель должен гарантировать качество товара как во время его хранения, так и во время его эксплуатации .

Для предвидения отказов в будущем необходимы фактические данные о частоте отказов за время использования оборудования по назначению.

При обработке информации применяется величина, обратная частости отказов "среднее время между отказами".

Для исследования надежности применяются достаточно сложные аналитические методики. Например, при исследовании электронных систем инженер выбирает ряд ключевых характеристик, выбирает наиболее важную из них, выбирает варианты действий и один из этих вариантов, изучает условия работы и оценивает их.

В связи с высокими темпами современного научно-технического прогресса важно выбрать оптимальный момент для перехода от научных исследований и подготовительных работ к производству продукции. В условиях конкуренции удачно выбранное время запуска в производство является важным фактором, действующим в двух направлениях: "слишком ранний" запуск в производство может привести к таким же отрицательным последствия, как и "слишком поздний".

Причинами изготовления ненадежной продукции могут быть:

  • – отсутствие регулярной проверки соответствия стандартам;
  • – ошибки в применении материалов и неправильный контроль материалов в ходе производства;
  • – неправильный учет и отчетность по контролю, включая информацию об усовершенствовании технологии;
  • – нс отвечающие стандартам схемы выборочного контроля;
  • – отсутствие испытаний материалов на их соответствие;
  • – невыполнение стандартов по приемочным испытаниям;
  • – отсутствие инструктивных материалов и указаний по проведению контроля;
  • – нерегулярное использование отчетов по контролю для усовершенствования технологического процесса.

Математические модели, применяемые для количественных оценок надежности, зависят от "типа" надежности. Современная теория выделяет три ее типа.

  • 1. Надежность мгновенного действия (например, плавких предохранителей).
  • 2. Надежность при нормальной эксплуатационной долговечности (например, вычислительной техники). В исследованиях нормальной эксплуатационной надежности в качестве единицы измерения используют "среднее время между отказами". Рекомендуемый в практике диапазон от 100 до 2000 ч.
  • 3. Чрезвычайно продолжительная эксплуатационная надежность (например, космические корабли). Если требования к сроку службы превышают 10 лет, их относят к чрезвычайно продолжительной эксплуатационной надежности.

При нормальной эксплуатационной надежности техническое предсказание надежности может быть теоретическим, эмпирическим и экспериментальным.

При теоретических средствах испытания разрабатывают схему данной операции и проверяют соответствие схемы с помощью математической модели. Если схема нс соответствует операции, вносятся уточнения до тех пор, пока соответствие не будет достигнуто. Это так называемое научное исследование.

Эмпирический подход заключается в выполнении необходимых измерений в отношении фактически выпускаемой продукции и выводах о надежности.

Экспериментальный подход занимает промежуточное положение между теоретическим и эмпирическим. При экспериментальном подходе используют и теорию, и измерения. При этом широко применяют методы математического моделирования процессов, создавая на этой основе экспериментальные данные. После этого информация подвергается статистическому анализу с применением современных средств вычислительной техники, что обеспечивает надежность и достоверность выводов.

Любому виду испытания предшествует план эксперимента.

Поскольку надежность является вероятностной характеристикой, количественные оценки используются для оценки "средней надежности", рассчитанной на основе выборок из всей совокупности, а также для предсказания будущей надежности. Надежность исследуется с помощью статистических методов и поддается уточнению с их помощью.

Следует отметить, что продолжительность службы не является единственным показателем эксплуатационных свойств.

В ряде случаев используются другие показатели (километраж пробега, продолжительность активного использования и др.); продолжительность службы изделий зависит как от условий изготовления, так и условий эксплуатации.

Надежность многих изделий может быть выявлена в условиях их потребления. Научно обоснованная система наблюдения за эксплуатацией изделий позволяет выявить дефекты, обусловленные нарушениями технологического процесса у производителя.

Производитель должен:

применять статистический контроль качества;

  • – проверять через определенные интервалы состояние управляемости процессов;
  • – стремиться к повышению качества и надежности выпускаемого оборудования;
  • – обеспечить правильное понимание требований заказчика и удовлетворения их.

Анализ различных определений надежности, имеющихся в литературе, приводит к обобщенному выводу, что под надежностью понимают безотказную работу изделий при регламентированных условиях эксплуатации в течение определенного периода времени.

Выборочный контроль. Характерной особенностью контроля при исследовании надежности является то, что возможности составления выборок ограничены малочисленностью единиц аппаратуры на ранних стадиях ее освоения. Как правило, число единиц для испытания выбирает заказчик. При этом уровень достоверности результатов испытания варьирует в зависимости от числа проверенных единиц. Такое же влияние оказывает продолжительность предполагаемого оперативного времени и степень износа образцов при испытании.

На практике составление выборок для испытания надежности производят в соответствии с планом, который вначале (а затем каждый раз, когда попавшее в выборку изделие характеризуется пониженным средним временем безотказной работы) предусматривает 10%-ный риск потребителя при уровне приемлемого качества, соответствующем 10% единиц, с надежностью ниже нормы. Отметим некоторое различие между статистическим контролем качества и выборочными проверками в связи с техническим обеспечением надежности. В последнем случае кроме вопросов представительности выборки возникает вопрос о необходимом времени испытаний.

Естественно, стопроцентное испытание партий до полного износа образцов невозможно. Поэтому схемы выборочного контроля, применяемые при изучении надежности, предусматривают текущую выборочную проверку выпускаемой продукции с ослабленным режимом контроля до тех пор, пока не будет обнаружена продукция с характеристиками ниже нормы. Иными словами, ослабленная процедура контроля продолжается до тех пор, пока в выборке не появится дефектный экземпляр. При обнаружении единицы выпускаемой продукции с пониженной против нормы характеристикой восстанавливается нормальный режим контроля, который может перейти в режим усиленного контроля в зависимости от количества брака, выявленного в выборке. Как правило, подобные планы выборочного контроля разрабатываются с учетом заданного среднего времени безотказной работы и размеров ежемесячного выпуска продукции.

При исследовании надежности для решения вопроса о приемке или забраковывании партии нередко используют метод последовательного анализа. Прежде всего выявляют, что среднее время безотказной работы при заданных условиях находится на уровне установленного минимума или превышает его. Такие испытания планируются после того, как предназначенные к испытанию образцы и испытательная аппаратура прошли надлежащую проверку. Испытания прекращаются, как только принимается решение о приемке. Но они не прекращаются, если принято решение забраковать партию. В последнем случае они продолжаются в соответствии с точно определенным планом статистического контроля.

Под отказом понимают появление первых признаков неправильной работы или неполадки в работе аппаратуры. Каждый отказ характеризуется определенным временем его возникновения.

Результаты исследования надежности имеют значение при сертификации продукции и систем качества Мазур И. И., Шапиро В. Д. Управление качеством: учеб. пособие. М.: Омега-Л, 2011.

Если ребенок начал вставать и передвигаться активнее - значит пришло время ограничить для его безопасности доступ к некоторым шкафам и ящикам.

В принципе выбирать мы не собирались, т.к. замки от IKEA внушали самое большое доверие. Но наличие 2-х больших комодов (а это уже 11 ящиков) и кроме них 12-ти других важных и опасных дверей, заставили присмотреться и оценить другие более дешевые аналоги. Брали на пробу разных производителей и практически все их пришлось заменить на икеевские.

О достоинствах (а недостатков кроме стоимости не обнаружено)

Служат уже год без нареканий. Держатся на любой поверхности. Главное -перед наклеиванием ее обезжирить.

Существует регулировка под разные двери в плане ширины замка - мы устанавливали и на шкаф в ванной,

где расстояние небольшое, и на ящик под кроваткой, где потребовалась максимальная длина замка. Регулируется путем отрезания ленты. Правда уже бесповоротно))

Замок достаточно туго открывается. С длинными ногтями думаю сложнее, с небольшими открытие-закрытие занимает секунды. Главное приноровиться. Ну а ребенку конечно не под силу вообще. В отличие от других испробованных нами замков.

Цвет только белый. Нас это более чем устроило, т.к. в комнате все в основном светлое, ну а там где не совпало для нас не страшно-на первом месте безопасность.