Технология литейных процессов. Технология литейного производства

29.12.2023

Контрольная работа

Технология литейного производства

2.Основные дефекты отливок

6. Литье в кокиль

7. Центробежное литье

Литература

1. Технологические понятия в литейном производстве

Литейное производство – отрасль машиностроения, изготовляющая заготовки заливкой расплавленного металла заданного химического состава в литейную форму, полость которой имеет конфигурацию отливки. При охлаждении залитый металл затвердевает и воспринимает конфигурацию полости формы.

Полученная после затвердевания металла заготовка называется отливкой. Отливка может быть или вполне законченным изделием, или подвергаться в дальнейшем механической обработке.

Литейные формы, используемые только один раз и разрушаемые при извлечении из них отливок (песчано-глинистые, оболочковые со смоляным связующим, неразъемные керамические и др.), называются разовыми. Полупостоянные формы, изготавливаемые из высокоогнеупорных материалов (гипса, цемента, графита и д.), выдерживают 3…100 и более заливок металла.

Разовые и полупостоянные литейные формы изготавливают по приспособлениям, называемым моделями. Процесс изготовления таких форм называется формовкой.

Модель по своей внешней конфигурации соответствует получаемой отливке и отличается большими размерами, учитывающими усадку металла и припуски на механическую обработку. В модели возможно наличие стержневых знаков.

Конфигурация модели должна обеспечивать легкость выемки ее из формы ; поверхность моделей тщательно обрабатывают, чтобы обеспечить получение чистых поверхностей формы. Модель должна быть прочной, не изменяться в размерах. Модели изготовляют из металлов и сплавов, дерева, гипса, пластмассы, из легкоплавких органических материалов.

Стержнем называют часть литейной формы, предназначенную для получения внутренних полостей в отливке.

Стержневыми знаками называют выступающие по модели части, не образующие конфигурацию отливки, а служащие для образования углублений в форме, в которые устанавливают стержни при сборке формы.

Литниковая система служит для запивки металла в полость формы с определенной последовательностью и скоростью заполнения, а также для питания отливки в процессе ее затвердевания.

Подготовка металла . В литейном производстве применяют жидкий сплав (расплав) и для подготовки его используют различные плавильные агрегаты.

Для получения отливок ответственного назначения используют в основном электропечи различного типа. Большое применение находят печи индукционные, электродуговые и печи сопротивления. Широко используются плавка и разливка в условиях вакуума (например, при получении отливок из титановых сплавов).

2.Основные дефекты отливок

Усадочные раковины – закрытые полости, большей частью окисленные, в отливках с шероховатой поверхностью (Рис. 1). Образуются усадочные раковины вследствие недостаточного питания отливки в местах скопления металла, неправильной конструкции отливки и литниковой системы. Устраняются усадочные раковины с помощью прибылей, которые затвердевают в последнюю очередь, в результате чего усадочные раковины выводятся в прибыль Затем он удаляется.

Рис. 1. Усадочная раковина в отливке и способ ее устранения

Горячие трещины – сквозные и несквозные разрывы в теле отливки. Они возникают обычно в местах перехода от тонкого сечения к толстому, в местах резких переходов сечения под прямым или острым углом (Рис. 2, а ), а также в том случае, если форма или стержень препятствуют усадке отливки (Рис. 2, б ).

Газовые раковины – полости в отливке округлой формы с гладкой поверхностью, размером от 1 до 10 мм, возникают при низкой газопроницаемости формы, при неправильно построенной литниковой системе.

Недоливы и спай (Рис. 3) образуются от неслившихся потоков металла, потерявших жидкотекучесть и затвердевших до заполнения формы.

Пригар – взаимодействие литейной формы и залитого металла при недостаточной ее огнеупорности и высокой химической активности.

Перекос (Рис. 4) в отливке образуется при небрежной сборке формы.

3. Технология получения отливок в песчано-глинистых формах

Способ литья в песчано-глинистые формы – один из древнейших способов, В модернизированном виде, за счет совершенствования составов формовочных смесей, этот способ находит применение в авиа- и кораблестроении.

Песчано-глинистые формы имеют разовое назначение.

Литейная песчано-глинистая форма представляет собой систему элементов, образующих рабочую полость (Рис. 4, а ) заливаемую расплавленным металлом. Для образования отверстий и других сложных очертаний в отливке применяют литейные стержни, которые фиксируются в литейной форме при помощи знаков, входящих в соответствующие впадины в полости формы. Литейные стержни изготовляют в стержневых ящиках (рис 4, б ) из специальных песчаных стержневых смесей с помощью машин, которые выполняют основные операции в процессе изготовления стержня: уплотнение смеси и извлечение стержня из ящика. Для подвода расплавленного металла в полость литейной формы и обеспечения ее заполнения и питания отливок при затвердевании изготавливают литниковую систему. Процесс изготовления литейных форм с помощью модели называют формовкой.

б в

Рис. 5. Общий вид песчано-глинистой формы (а), стержня (б) и модели (в)

Модели делают металлические или деревянные, с плоскостью разъема (рис 5, в ) Разъем модели совпадает с плоскостью разъема формы. При этом способе литейная форма в основном получается разъемной. (рис 5, а ).

Литейная форма должна обладать:

а) прочностью – способностью выдерживать силовые нагрузки, возникающие при заливке расплавленного металла;

б) газопроницаемостью – способностью пропускать газы, пар, находящиеся и образующиеся в литейной форме при заливке расплавленного металла;

в) податливостью – способностью уменьшаться в объеме под действием усадок отливки при ее охлаждении;

г) огнеупорностью – способностью не расплавляться под действием тепла расплавленного металла.

Для изготовления литейных форм применяют формовочные смеси.

Формовочные смеси при изготовлении формы примыкают к модели и образуют соприкасающийся с жидким металлом рабочий слой формы. Свойства формовочных смесей зависят от их состава. В состав формовочных смесей входят огнеупорные материалы – кварцевые Si О 2 , или цирконовые ZrO 2 Si О 2 , пески, являющиеся основой формы, глина как связующее и специальные добавки, улучшающие характеристики смесей.

Формы можно изготовлять ручным способом для получения очень сложных единичных отливок. На современных машиностроительных заводах массового и крупносерийного производства песчано-глинистые формы изготовляют на формовочных машинах в опоках на специальных модельных плитах (рис 5, оформляющих разъем литейной формы, несущих на себе различные части модели (модель отливки 1 и модели литниковой системы 2, 3) и служащих для набивки оной из парных опок. Современные формовочные машины обычно механизируют по двум основным операциям в процессе изготовления форм: уплотнение формовочной смеси в опоке и извлечение модели из формы. По методу уплотнения смеси формовочные машины подразделяются на встряхивающие, прессовые, встряхивающие с подпрессовкой и пескометы. По способу удаления модели из формы они подразделяются на машины с поворотной плитой, со штифтовым подъемом с перекидным стоном и с протяжной плитой.

Изготовление форм на прессовых машинах (Рис. 7) осуществляется в такой последовательности: на модельную плиту 4 , прикрепленную к столу машины, устанавливают опоку 5, а на опоку – наполнительную рамку 6 . Опока с наполнительной рамкой заполняется формовочной смесью. Над наполнительной рамкой на траверсе устанавливается прессовая колодка 7. В прессовый цилиндр 1 подается под давлением сжатый воздух. Прессовый поршень 2 поднимается вверх навстречу прессовой колодке 7, которая входит внутрь наполнительной рамки в опоку, После снятия давления поршень вместе со столом и опокой опускается вниз. Затем опока с помощью съемного механизма 3 поднимается вверх с модельной плиты.

Рис. 6. Специальная модельная плита

Рис. 7. Прессовая машина для изготовления песчано-глинистых форм

На прессовых машинах изготовляют полуформы высотой не более 200 мм, так как при больших высотах не обеспечивается равномерная
плотность формы. Полученные формовкой полуформы спариваются, предварительно устанавливаются стержни, если они необходимы. Собранные формы заливают жидким металлом. Для заливки сплава применяют литниковую систему. В литейных цехах индивидуального я мелкосерийного производства формы заливают на формовочном плацу, располагая их в ряд. В крупносерийном и массовом производстве формы заливают на рольганговых транспортерах. В последнее время для изготовления форм и заливки металла применяют автоматизированные линии. Приготовление литейных сплавов связано с процессом плавления различных шихтовых материалов. Для выплавки стали нашли широкое применение индукционные высокочастотные печи, позволяющие нагревать металл до высоких температур, создавать вакуум, получать металл высокого качества. В песчано-глинистые формы практически возможно заливать широкую гамму сплавов и получать отливки неограниченной массы и любых размеров.

Для плавки алюминиевых сплавов широко применяют тигельные печи сопротивления, которые могут быть поворотными и стационарными, а также высокопроизводительные индукционные двухканальные печи с металлическим сердечником (металлическим сердечником является сам расплав), в которых металл получается более высокого качества, чем при плавке печах другого типа. Плавка алюминиевых сплавов имеет ряд трудностей из-за сильного окисления их и насыщения газами. Существует несколько способов подготовки металла, обеспечивающих получение качественных отливок из алюминиевых сплавов: плавка под слоем флюса, рафинирование жидкого расплава нейтральными газами либо солями. При газовом рафинировании после расплавления алюминиевого сплава при температуре 660…680°С его рафинируют хлором. Рафинирование осуществляют продуванием через сплав хлора в течение 5…15 минут.

Кроме хлора для газового рафинирования можно применять азот, аргон.

Отрафинированный металл заливают в подготовленную литейную форму. После заливки и охлаждения металла отливку извлекают (выбивают), при этом форма разрушается. Отливка извлекается из формы либо вручную, либо механически, либо автоматически в зависимости от характера производства.

В дальнейшем отливку очищают в очистных барабанах или дробеметных устройствах камерного или барабанного типа. Обрубку и зачистку отливок от остатков питателей, заусенцев, заливок производят абразивными кругами на абразивных прессах.

4. Структура литниковой системы

Литниковой системой называют совокупность каналов и резервуаров, по которым жидкий металл из ковша поступает в полость формы (Рис. 8).

Рис. 8. Схема литниковой системы

Литниковая чаша (2) – резервуар, предназначенный для приема жидкого металла и передачи его в стояк 3.

Стояк (3) – вертикальный (иногда наклонный) канал круглого, овального или иного сечения, предназначенный для передачи металла из чаши к другим элементам литниковой системы.

Шлакоуловитель (1) – канал, в котором задерживается шлак и неметаллические включения, увлекаемые жидким металлом в форму. Для предупреждения попадания шлака в полость формы во время заливки ее чаша должна быть постоянно заполнена до краев. Это способствует всплыванию шлака и препятствует его попаданию в полость формы. Однако часть шлака все же может увлекаться жидким металлом. Для предотвращения попадания его в форму служит шлакоуловитель. Шлак, имея значительно меньшую полость, чем металл, всплывает в верхнюю часть шлакоуловителя и задерживается в нем, а чистый металл из нижней части шлакоуловителя через питатель поступает в полость формы. Чтобы шлак хорошо задержался, питатели обычно располагают ниже шлакоуловителя.

Шлакоуловитель применяется при тяжелых металлах, для которых характерна высокая скорость всплывания шлаков. Для легких сплавов необходим коллектор – распределитель, так как плотность заливаемого металла близка к плотности шлаков и скорость всплывания шлаков незначительна.

Питатели (литники) (4) – каналы, предназначенные для передачи металла непосредственно в полость формы.

Литниковые системы делят на следующие наиболее распространенные типы (обозначения на Рис. 9 соответствуют Рис. 8):

Рис. 9. Наиболее распространенные типы литниковых систем

1) верхняя (Рис. 9, а ) – питатели подводят металл в верхнюю часть отливки;

2) нижняя или сифонная – питатели подводят металл в нижнюю часть отливки (Рис. 9, б );

3) щелевая – питатели подводят металл по высоте отливки (Рис. 9, в );

4) ярусная – питатели подводят металл на нескольких уровнях
(Рис. 9, г ).

Тип литниковой системы выбирают в зависимости от вида металла, конструкции отливки, положения ее при заливке и т.д.

Помимо выбора типа литниковой системы большое значение имеет выбор места подвода питателей к отливке. В зависимости от свойств сплава, конструкции отливки (габаритных размеров, толщины стенки) при подводе металла стремятся обеспечить либо направленное затвердевание, либо одновременное, равномерное охлаждение различных частей отливки.

Литниковые системы рассчитываются. Расчет сводится к определению площади наименьшего сечения литниковой системы (стояка или питателя) с последующим определением по соотношениям площадей сечения остальных элементов системы.

Площадь наименьшего сечения F нс находят по формуле

, (1)

где G – масса металла, прошедшего через минимальное сечение;

τ – продолжительность заливки, с: ;

γ – плотность жидкого металла, г/см 3 ;

μ – коэффициент расхода литниковой системы, учитывающий потери скорости, трение повороты;

Н р – расчетный напор, см; δ – преобладающая толщина стенки отливки, мм;

S – коэффициент, зависящий от толщины стенки и конфигурации отливки: для титановых и магниевых сплавов и стали – 0,91…1,7; алюминиевых сплавов – 1,7…3,0.

Напор Н р зависит от способа заливки, типа литниковой системы, положения отливки в форме и других факторов. Для случая подвода металла по разъему формы, очень распространенного в литейном производстве, Н р можно рассчитывать по формуле

, (2)

где Н 0 – первоначальный максимальный напор заливаемого металла;

р – расстояние от самой верхней точки отливки до уровня подвода металла;

с – высота отливки (по положению при заливке металла).

При расчетах площадей литниковых каналов пользуются отношениями

Или 1: 3: 6

5. Литье в оболочковые (корковые, скорлупчатые) формы

Литье в оболочковые формы – процесс получения отливок путем свободной заливки расплавленного металла в оболочковые песчано-смоляные формы, изготовленные формовкой по горячей модели.

Разновидностей данного способа литья много, наиболее распространенные следующие.

Оболочковые формы изготовляют из неплакированной песчано-смоляной смеси (кварцевый песок – основа, 3…8% феноло-формальдегидной смолы, 0,8% нефтеполимера) (Рис. 10, а ) или плакированной (Рис. 10, б ), для которой феноло-фармальдегидную смолу предварительно растворяют в ацетоне или спирте, а затем смешивают с кварцем. Плакированные смеси содержат смолу в виде тонкой пленки, покрывающей поверхность зерен кварца (Рис. 10, б ). Оболочковые формы из плакированной смеси имеют более высокую прочность при минимальном расходе смеси. Смола обладает способностью при нагревании до 160…200°С оплавляться, переходить в термопластическое состояние, что способствует получению четкого отпечатка модели.

При нагревании до 290…350°С смола переходит в стойкое термореактивное (необратимое) состояние.

На Рис. 11 показана схема процесса получения оболочковой полуформы. На бункере 1 (рис 17, а ), в котором находится формовочная смесь, закрепляют металлическую модельную плиту З с моделью 4, нагретые до 160…200°С. После этого бункер опрокидывается, формовочная смесь 2 покрывает горячую модельную плиту 3 и модель 4 (рис 17, б ). Далее бункер поворачивается на 180°. Слой формовочной смеси остается на модели 4 (рис, 17, в ), а модельная плита 3 отделяется от бункера 1 (ряс. 17, г ) и помещается в электрическую печь для окончательного затвердевания оболочки. Затем с модельной плиты 3 удаляют готовую полуформу (Рис. 11, д ). Технологический процесс повторяется для получения второй полуформы. Полученные таким образом две полуформы соединяют скобами.

а б

Рис. 10. Неплакированная (а ) и плакированная (б ) песчано-смоляная смесь

А б в г д

Рис. 11. Последовательность получения обыкновенной полуформы

В собранную и остывшую до комнатной температуры форму заливают жидкий металл. После крнсталлизацнн н остывания отливки связующее литейной формы почти полностью выгорает, в связи с чем облегчается выбивка отливки из формы.

При получении крупных отливок, ввиду опасности прорыва металла, во время заливки оболочковые формы помешают в опоку и засыпают чугунной дробью.

Оболочковая форма обладает в 10 – 30 раз большей газопроницаемостью, чем песчано-глинистая. Податливость оболочковой формы также повышена, что уменьшает появление внутренних напряжений в отливках. У таких форм меньшая, чем у песчано-глинистых форм, осыпаемость корки и выделение слабо восстановительных газов в момент заливки металлов, что улучшает чистоту поверхности отливки и уменьшает количество песчаных засоров.

Литье в оболочковые формы позволяет повысить точность геометрических размеров отливок, в два раза снизить припуски на механическую обработку; в 5 – 10 раз снижается расход формовочных материалов; упрощаются процессы механизации и автоматизации производства отливок.

Этим способом изготовляют отливки массой до 25...30 кг, а Иногда до 100...150 кг с отверстиями 6 мм и минимальной толщиной стенок 3...4 мм.

Литьем в оболочковые формы изготовляют коленчатые и кулачковые валы, выхлопные клапаны, шестерни, фланцы выхлопных трубопроводов, гильзы блока цилиндров, картер блока цилиндра, ребристые цилиндры, кронштейны, стойки, крышки и др.

Ограничительными факторами литья в оболочковые формы являются:

1. Формы разъемные, что существенно влияет на точность размеров отливки в направлениях, перпендикулярных плоскостям разъема форм.

При изготовлении массивных отливок наблюдаются значительные коробления форм.

6. Литье в кокиль

Литье в кокиль – процесс получения фасонных отливок путем свободной заливки расплавленного металла в металлические формы – кокили.

Литье в кокиль широко применяется в серийном и массовом производстве отливок для самых разнообразных изделий с толщиной стенки 3...100 мм из медных, алюминиевых и магниевых сплавов, а также из чугуна и стали, масса которых колеблется в широких пределах – от нескольких граммов, до нескольких тонн; например, крупные лопасти, головки и блоки двигателей внутреннего сгорания, корпуса нагнетателей реакторов, диффузора и др.

Литьем в кокиль обеспечивается повышенная точность геометрических размеров, снижается шероховатость поверхности отливок, уменьшаются припуски на механическую обработку, улучшаются механические свойства отливок в сравнении с отливками, полученными в песчано-глинистых формах.

Недостаток литья в кокиль – большая стоимость изготовления и высокая теплопроводность формы, приводящая к понижению заполняемости ее металлом вследствие быстрой потери текучести.

Конструкции кокилей чрезвычайно разнообразны. Кокиль для простых отливок изготовляют из двух частей, соответствующих верхней и нижней опокам при литье в песчано-глинистые формы. Для сложных отливок форму изготовляют из разъемных частей, каждая из которых образует часть отливки, при этом поверхность разъема формы определяется конструкцией отливки; при этом поверхность разъема формы определяется конструкцией отливки. Кроме этого, толщина стенок кокиля влияет на скорость затвердевания и последующее охлаждение отливки, а следовательно, на образование структуры отливки.

Для получения внутренней полости отливки применяют стержни: для отливок из легкоплавких сплавов – преимущественно металлические, для чугунных и стальных отливок – песчаные.

Газ, находящийся в форме, отводится через выпор и вентиляционные отводные каналы, расположенные вдоль разъема формы. Для извлечения отливки в форме имеются выталкиватели.

Технология литья в кокиль имеет ряд специфических особенностей, обусловленных конструкцией металлической формы и требованиями к заливаемому металлу.

В целях получения качественной отливки и удлинения срока службы кокиля его покрывают огнеупорной облицовкой или краской. Рабочая температура формы зависит от заливаемого сплава находятся в пределах 150 – 300°С. Нанося более толстый спой краски на отдельные участки формы, можно предотвратить быстрый теплоотвод на границе металл-форма и таким образом, в разных частях отливки.

Краски часто изготовляют из материалов, выделяющих газ в период заливки на границе металл-форма; газ создает восстановительную атмосферу, предохраняющую металл от окисления. Наиболее часто применяют окись цинка, тальк, графит, окись алюминия.

В массовом и серийном производстве применяют специальные литейные кокильные машины с механизированным разъемом отдельных частей. При э том заливаемый металл должен обладать хорошей жидкотекучестью и малой усадкой.

7. Центробежное литье

Использование центробежных сил для заполнения и кристаллизации металла в полости формы – отличительная особенность центробежного литья. Центробежные силы образуются в результате вращения литейной формы.

Этот способ литья применяют преимущественно для изготовления полых отливок, имеющих форму тела вращения (трубы, втулки, кольца), из чугуна, стали, цветных сплавов (медных, алюминиевых, титановых и др.), фасонных отливок с малой толщиной стенок, но повышенной плотностью материала (лопатки турбин, корпуса, детали гидроаппаратуры и т.д.). Для получения отливок используют установки с горизонтальной и вертикальной осью вращения формы. Под действием центробежных сил жидкий металл 1 (Рис. 12) прижимается в внутренней поверхности вращающейся формы 2, увлекается ею и в таком состоянии кристаллизуется. При центробежном литье возможно применять не только металлическую форму, но и оболочковую 1 (Рис. 13), песчано-глинистую и форму, получаемую по выплавляемой модели.

Рис. 1 Схема центробежного литья

Центробежное литье по сравнению с литьем в неподвижные формы имеет ряд преимуществ:

1) отливки обладают большой плотностью материала;

2) исключаются затраты на изготовление стержней для получения полости в цилиндрических отливках;

3) улучшается заполняемость форм металлом;

4) возможно получение отливок из сплавов, обладающих низкой жидкотекучестью.

Рис. 13. Схема центробежного литья в оболочковую форму

Центробежный способ литья имеет следующие недостатки:

1) загрязнение свободной поверхности отливки неметалли-ческими включениями (более легкими, чем сплав отливки);

2) наличие дефектов в отливке в виде химической неоднородности по радиальному направлению из-за ликвации составляющих сплава по плотности. С увеличением скорости вращения возрастает ликвация элементов по плотностям в сечении отливки.

Скорость вращения форм является важным параметром технологии центробежного литья. При заниженной скорости вращения внутренняя поверхность получается негладкой, не происходит достаточного очищения отливок от неметаллических включений. При завышенной скорости сильно возрастает внутреннее давление жидкого металла, что приводит к образованию трещин и усиливается ликвация компонентов сплава по плотностям. Оптимальную скорость вращения для каждой отливки определяют по эмпирическим формулам или номограммам.

8. Литье по выплавляемым моделям

Литье по выплавляемым моделям – это процесс получения отливок в неразъемных разовых огнеупорных формах, изготавливаемых с помощью моделей из легкоплавящихся, выжигаемых илы растворяемых составов. Используют как оболочковые (керамические), так и монолитные (гипсовые) формы. При этом, рабочая полость формы образуется выплавлением, растворением или выжиганием модели.

Модельные составы, применяемые при литые по выплавляемым моделям, должны обладать минимальными значениями усадки и коэффициента термического расширения, иметь высокую жидкотекучесть в вязкопластичном состоянии, хорошо смачиваться керамической или гипсовой суспензией, наносимой на модель, но химически с ней не взаимодействовать, обладать температурой размягчения, превышающей 40°С.

Изготовление моделей осуществляется посредством заливки или запрессовки модельного состава в пастообразном (подогретом) состоянии в специальные пресс-формы 1 (Рис. 14). В частности, литьевой способ получения пенополистероловых моделей на специальных термопластавтоматах включает в себя пластификацию нагревом (100 – 220°С) гранул полистирола, впрыскивая его в пресс-форму с последующим вспениванием и охлаждением модели. Для производства пресс-форм используют как металлические (стали, алюминиевые и свинцово-сурьмянистные сплавы), так и неметаллические (гипс, эпоксидные смолы, формопласт, виксинт, резина, твердые породы дерева) материалы. Пресс-формы, используемые для получения моделей, должны обеспечивать им высокие параметры точности размеров и качества поверхности, быть удобными в изготовлении и эксплуатации, а также иметь соответствующий уровню серийности ресурс работы. Так, при единичном, мелкосерийном и серийном производствах используются, в основном, литые металлические, гипсовые, цементные, пластмассовые, деревянные, а также полученные методами металлизации пресс-формы, изготавливаемые с помощью механической обработки.

Рис. 14. Литье по выплавляемым моделям: 1 – пресс-форма; 2 – модель; 3 – модельно-литниковый блок; 4 – суспензия; 5 – псевдоожиженный слой зернистого огнеупорного материала; 6 – подача сжатого воздуха; 7 – расплав модельной массы (или горячая вода); 8 – керамическая оболочковая форма; 9 – опорный наполнитель (кварцевый песок); 10 – печь; 11 – ковш

При изготовлении гипсовых пресс-форм эталон модели (модель-эталон), выполненный из любого конструкционного материала, заливают водной суспензией высокопрочного гипса марок 350 и выше. Такие пресс-формы выдерживают изготовление до 50 штук моделей, но не обеспечивают последним высоких показателей точности размеров и качества поверхности.

Для изготовления пресс-форм применяются также методы гальванопластики, металлизации и напыления. Так, гальваническое покрытие наносят на модель-эталон, изготовленный из полированного сплава на основе алюминия или цинка. При формировании плазменных покрытий на основе металлических порошков в качестве материала модели-эталона применяют металлические сплавы, графит или гипс. Запрессовка модельных составов осуществляется на прессах (пневматических, рычажных и др.) или вручную. Монтаж модельных блоков осуществляется путем объединения мелких моделей 2 в блоки 3 (Рис. 14, б ) с единой литниковой системой, что повышает технологичность, производительность и экономичность процесса литья. Сборка моделей в модельные блоки (т. е. соединение моделей отливки с моделью стояка) осуществляется разными способами: а) припаиванием разогретым инструментом (паяльником, ножом) или жидким модельным составом; б) соединение моделей в кондукторе с одновременной отливкой модели лнтниковой системы; в) соединением моделей в блоки на металлическом стояке (каркасе) с помощью механического крепления (зажима); г) склеиванием моделей отливки и литниковой системы.

Способ литья по выплавляемым моделям нашел широкое применение в промышленности (особенно в авиастроении) благодаря использованию неразъемных керамических оболочковых форм. обладающих комплексом необходимых эксплуатационных свойств (газопроницаемость, термостойкость, жесткость, гладкость поверхности. точность размеров. отсутствие газотворности, высокая рабочая температура и др.).

Обычно керамическая оболочка состоит из 3 – 8 последовательно наносимых слоев (в принципе, число слоев может достигать 20 и более), обеспечивающих в итоге общую толщину стенок формы от 2 до 5 мм. В ряде случаев допускаются и меньшие значения толщин стенок (0,5—1,5 мм) керамической оболочки. Слои суспензии 4 наносят погружением в нее модельного блока (рис 20, б ). После стекания с моделей излишков суспензии их обсыпают огнеупорным материалом (например, кварцевым песком, крошкой шамота, электрокорундом с размером зерен для разных слоев в пределах 0,1 – 1,5 мм) в псевдожиженном слое 5 (Рис. 14, г ) и сушат. При этом каждый слой оболочки просушивают до тех пор, пока содержание жидкой фазы в нем будет не более 20%.

Преимуществами данного способа литья являются: возможность получения отливок сложной конфигурации; использование практически любых сплавов; высокое качество поверхности и точность размеров отливок; минимальные припуски на механическую обработку; обеспечение качественной равновесной, столбчатой и монокристаллической структуры с высоким уровнем эксплуатационных свойств.

К недостаткам способа литья можно отнести: многооперационность, трудоемкость и длительность процесса, многообразие материалов, используемых для изготовления формы.

Способом литья по выплавляемым моделям изготавливают сложные отливки высокого качества, например, турбинные лопатки из жаропрочных сплавов, постоянные магниты с определенной кристаллографической ориентацией структуры, художественные изделия и др.

9. Способ литья под давлением и выжиманием

Литьем под давлением называется способ получения фасонных отливок в металлических формах, при котором форму принудительно заполняют металлом под давлением, превосходящим атмосферное. Литые под давлением обеспечивает высокую точность геометрических размеров и малую шероховатость поверхности, значительно снижает объем механической обработки отливок и в некоторых случаях полностью ее исключает, обеспечивает высокие механические свойства отливок, позволяет получить сложные по конфигурации отливки с малой толщиной стенок.

Этим способом получают отливки из алюминиевых, магниевых, цинковых и медных сплавов с толщиной стенок от 0,7 до 6,0 мм, массой от нескольких граммов до 50 кг. Он находит применение для изготовления деталей электронно-счетных машин, оптических приборов, блоков цилиндров, тормозных дисков и др.

При литье под давлением металлические формы имеют более сложную конструкцию и их изготовляют более точно и тщательно, чем при кокильном литье. Формы при литье под давлением делают стальными со стальными стержнями. Применение песчаных стержней исключено, так как струя металла под давлением может размыть песчаный стержень.

Для создания давления при заполнении формы металлов применяют специальные весьма сложные машины. Существуют машины компрессорного действия и поршневого. Давление на металл в разных конструкциях машин колеблется в широких пределах (от 60 до 2000 Па).

Литье выжиманием используют для получения тонкостенных крупногабаритных отливок панельного типа размерами до 10002500 мм с толщиной стенки 2,5...5 мм. Способ позволяет также изготовлять отливки типа тонкостенных цилиндрических оболочек. Точность отливок приближается к точности отливок, получаемых при свободном литье в металлические формы, уступая им из-за неточности стыковки полуформ. Характерной особенностью литья выжиманием является отсутствие литниковой системы и возможности заливки металла при более низких температурах (в суспензионном состоянии, т.е. в начальной стадии кристаллизация).

10. Литейные свойства сплавов

Не все известные сплавы в одинаковой степени пригодны для изготовления отливок. Из одних сплавов (оловянистой бронзы, силумина, серого чугуна и др.) можно получить фасонное литье заданной конфигурации с соответствующими свойствами любыми способами литья, из других сплавов (титановых, легированных сталей) получение отливок сопряжено с большими технологическими трудностями (требуется вакуумная защита, высокие давления и др.).

Возможности и трудности получения из металлов и сплавов отливок высокого качества в большой степени предопределяются их литейными свойствами. Литейные свойства – свойства, характеризующие поведение металлов и сплавов при изготовлении из них отливок.

Таким образом, литейными свойствами являются такие технологические свойства металлов и сплавов, которые прямо и непосредственно влияют на получение качественных отливок заданной конструкции с необходимыми эксплуатационными показателями: точностью и чистотой поверхности.

Литейные свойства сплавов должны обязательно учитываться при конкретной разработке технологии получения отливки, а также в процессе создания и проектирования литых конструкций. Надежность и долговечность изделий в значительной степени предопределяются литейными свойствами используемого для их изготовления сплава.

Номенклатура литейных свойств в зависимости от уровня производства литейных сплавов и общего развития техники может со временем меняться. В настоящее время номенклатура литейных свойств складывается из следующих показателей: жидкотекучесть; усадка; склонность к поглощению газов и образованию газовых включений; склонность к образованию неметаллических включений; особенности строения при первичной и вторичной кристаллизации макро- и микроструктуры; трещиноустойчивость; образование литейных напряжений; склонность к ликвидации; активность взаимодействия сплавов со средой и литейной формой.

Под жидкотекучестью понимают способность металлов и сплавов в жидком состоянии заполнять литейные формы, в которых формируется отливка.

Хорошая жидкотекучесть необходима не только для воспроизведения в отливке очертаний литейной формы, но и для улучшения вывода за пределы отливки усадочных раковин, для уменьшения опасности образования всех видов пористости и трещин. Заполнение литейной формы жидким металлом – сложный физико-химический и гидромеханический процесс.

Жидкотекучесть зависит от характера движения сплава, и при турбулентном движении она будет меньшей, чем при ламинарном. Потеря расплавом способности ламинарного движения при прочих равных условиях зависит от числа Рейнольдса Re : чем меньше значение числа Рейнольдса у литейного сплава, тем он легче переходит из ламинарного в турбулентное движение. Число R е для стали в два раза меньше числа R е для чугуна. Из этого следует, что сталь может перейти из ламинарного в турбулентное движение легче чугуна.

Жидкотекучесть находится в зависимости от положения сплава на диаграмме состояния. Наибольшей жидкотекучестью обладают чистые металлы и славы эвтектического состава (рис 21); наименьшей – сплавы, образующие твердые растворы. Это обусловливается тем, что при затвердевании чистых металлов и сплавов эвтектического состава образуются кристаллы постоянного состава, которые растут от поверхности отливки сплошным фронтом, и жидкий расплав имеет возможность свободно перемещаться внутрь отливки. В сплавах типа твердых растворов кристаллизация протекает с образованием нитевидных кристаллов, которые далеко проникают в объем отливки в виде тонких разветвленных дендритов, что приводит к сильному уменьшению жидкотекучести. Жидкотекучесть в большой степени зависит интервала кристаллизации сплава.

Рис. 15. Диаграммы состояния (а ) и жидкотекучести (б ) сплавов системы Рв – Sn

Жидкотекучесть является функцией большого числа переменных и аналитическое определение ее весьма затруднительно, поэтому на практике для установления жидкотекучести применяют технологические пробы. Результаты испытания, как правило, изображают графически в координатах жидкотекучесть – температура заливки или жидкотекучесть – химический состав и т.п. Полученными кривыми пользуются при выборе температуры заливки или состава литейного сплава.

Усадка – свойство металлов и сплавов уменьшать линейные размеры и объем отливки при охлаждении. При охлаждении отливки ее линейные размеры начинают изменяться с момента, когда на поверхности образуется прочная твердая корка.

В литейном производстве усадку отливок, связанную только со свойствами сплавов, принято называть свободной усадкой. Если же усадка определяется не только физическими свойствами сплава, но и размерами и конструкцией литейной формы, то такая усадка называется затруднительной.

В табл. 1 приводятся ориентировочные значения свободной и затруднительной линейной усадки для наиболее распространенных сплавов. Усадка сплавов изменяется в связи с изменением их состава.

Таблица 1

Свободная и затрудненная линейная усадка литейных сплавов

Сплав

Линейная усадка, %

свободная

затруднительная

Серый чугун

1,1…1,3

0,6…1,2

Белый чугун

1,8…2,0

1,5…2,0

Углеродистая сталь

2,0…2,4

1,5…2,0

Специальная сталь

2,5…3,0

2,0…2,5

Латуни

1,5…1,9

1,3…1,6

Оловянистые бронзы

1,2…1,4

0,9…1,0

Безоловянистые бронзы

1,6…2,2

1,1…1,8

Магниевые сплавы

1,3…1,9

1,0…1,6

Усадка относятся к числу важнейших литейных свойств сплавов, так как с ней связаны основные технологические трудности получения качественных отливок. Усадка может вызвать появление в металле напряжений, деформацию отливок и в некоторых случаях образование в них трещин. Причинами напряженного состояния материала отливок могут быть: сопротивление литейной формы, усадка металла и неодновременное охлаждение различных частей отливок неправильно выбранный способ литья. При охлаждении различных участков отливки с разной скоростью усадка этих участков металла протекает неодинаково, в результате развиваются литейные напряжения.

Для получения плотных отливок из сплавов с большой усадкой при разработке литниковых систем предусматривают прибыли. Прибыль устанавливают в верхней части отливки с таким расчетом, чтобы благодаря ускоренному охлаждению низа и стремлению жидкого металла переместиться на более низкие уровни все усадочные полости оказались бы внутри прибыли, которую затем отделяют от отливки.

При выборе металла для литых деталей конструктор должен быть осведомлен о его жидкотекучести, литейной усадке, технологии получения данной отливки и о влиянии ее на прочностные характеристики разрабатываемого узла.

Литература

1. Технология конструкционных материалов: Учеб. пособие для вузов по специальности «Комплексная автоматизация машиностроения» / А.М. Дальский, В.С. Гаврилюк, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. – М.: Машиностроение, 1990. – 352 с.

2. Технология конструкционных материалов: Учебн. для вузов / А.М. Дальский, И.А. Арутюнова, Т.М. Барсукова и др.; Под общ. ред. А. М. Дальского. – М.: Машиностроение, 1985. – 448 с.

3. Технология металлов и других конструкционных материалов. / М.А. Барановский, Е.И. Вербицкий, А.М. Дмитрович и др. Под общ. Ред. А.М. Дмитровича. – Минск: Вышезйш. шк., 1973. – 528 с.

4. Технология металлов и сварка: Учебник для вузов / П.И. Полухин, Б.Г. Гринберг, В.Т. Ждан и др.; Под общ. ред. П.И. Полухина. – М.: Машиностроение, 1984. – 464 с.

5. Челноков Н.М., Власьевнина Л.К., Адамович Н.А. Технология горячей обработки материалов: Учебник для учащихся техникумов. – М.: Высш. шк, 981. – 296с.

6. Семенов Е.И., Кондратенко В.Г., Ляпунов Н.И. Технология и оборудование ковки и объемной штамповки: Учебн. пособие для техникумов. – М.: Машиностроение, 1978. – 311 с.

7. Технология и оборудование контактной сварки: Учебник для машиностроительных вузов /Б.Д. Орлов, А.А. Чакалев, Ю.В. Дмитриев и др.; Под общ. ред. Б.Д. Орлова. – М.: Машиностроение, 1986. – 352 с.

8. Полетаев Ю.В., Прокопенко В.В. Термическая резка металлов: Учеб. пособие / Волгодонский институт (филиал) ЮРГТУ. – Новочеркасск: ЮРГТУ, 2003. – 172 с.

9. Технология обработки конструкционных материалов: Учеб. для машиностр. спец. вузов / П.Г. Петруха, А.И. Марков, П.Д. Беспахотный и др.; по ред. П.Г. Петрухи. – М.: Вьгсш. шк., 1991. – 512 с.

10. Металлорежущие станки: Учеб. пособие для втузов. Н.С. Колев, Л.В. Красниченко, Н.С. Никулин и др. – М.: Машиностроение, 1980. – 500 с.

11. Станочное оборудование автоматизированного производства. Т. 2./ Под ред. В. Н. Бушуева. – М.: Изд-во “Станкин”, 1994. – 656 с.

12. Физико-технологические основы етодтов обработки / Под ред. А.П. Бабичева. – Ростов – на – Дону: Изд-во «Феникс», 2006. – 409 с.

13. Бутенко В.И. Технология механической обработки металлов и сплавов: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2003. – 102 с.

14. Кулинский А.Д., Бутенко В.И. Отделочно-упрочняющая обработка деталей машин: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2006. – 104 с.

15. Дюдин Б.В., Дюдин В.Б. Электрофизические и электрохимические методы обработки материалов в приборостроении: Учебное пособие. – Таганрог: Изд-во ТРТУ, 1998. – 82 с.

16. Берела А.И., Егоров С.Н. Технология, машины и оборудование машиностроительного рпоизводства: Учебное поосбие. – Новочеркасск: Изд-во ЮРГТУ (НПИ), 2005. – 184 с.

17. Евстратова Н.Н., Компанеец В.Т., Сахарникова В.А. Технология конструкционных материалов: Учебное пособие. – Новочеркасск: Изд-во ЮРГТУ (НПИ), 2007. – 350 с.

18. Титов Н.Д., Степанов Ю.А. Технология литейного производства. – М.: Машиностроение, 1974. – 672 с.

19. Бутенко В.И., Захарченко А.Д., Шаповалов Р.Г. Технологические рпоцессы и оборудование: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2005. – 132 с.

20. Попов М.Е., Кравченко Л.А., Клименко А.А. Технология заготовительно-штамповочного производства в авиастроении: Учебное пособие. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 83 с.

21. Флек М.Б., Шевцов С.Н., Родригес С.Б., Сибирский В.В., Аксенов В.Н. Разработка технологических процессов изготовления деталей летательных аппаратов: Учебное пособие. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 179 с.

22. Дальский А.М., Суслов А.Г., Косилова А.Г. и др. Справочник технолога-машиностроителя. Т. 1 – М.: Машиностроение, 2000. – 941 с.

23. Слюсарь Б.Н., Шевцов С.Н., Рубцов Ю.Б. Введение в авиационную технику и технологию: Текст лекций. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 149 с.

24. Бутенко В.И., Дуров Д.С. Совершенствование процессов обработки авиационных материалов. – Таганрог: Изд-во ТРТУ, 2004. – 127 с.

25. Вульф А.М. Резание металлов. – Л.: Машиностроение, 1975. – 496 с.

26. Бутенко В.И. Бездефектное шлифование поверхностей деталей машин (библиотека технолога). – Таганрог: Изд-во ТТИ ЮФУ, 2007. – 60 с.

27. Бутенко В.И. Структура и свойства материалов в экстремальных условиях эксплуатации. – Таганрог: Изд-во Технологического института ЮФУ, 2007. – 264 с.

Задание на курсовой проект................................. 2

1.1. Обоснование способа формовки.................... 4

1.2. Обоснование положения детали в форме при заливке6

1.3. Обоснование выбора поверхности разъема формы и модели7

1.4. Обоснование величины усадки и припусков на механическую обработку, уклонов, галтелей..... 8

1.5. Определение конструкций и размеров знаков стержней. Проверка знаков на смятие 10

1.6. Расчет литниковой системы......................... 14

1.7. Расчет размеров прибылей и холодильников.... 21

1.8. Обоснование применяемой оснастки............. 25

1.9. Расчет размеров опок, массы груза........... 27

1.10. Выбор формовочных и стержневых смесей..... 30

1.11. Режим сушки форм и стержней................. 34

Карта технологического процесса..................... 35

Список литературы........................................ 37

2. Графическая часть

2.1. Чертеж детали с элементами литейной формы и отливки

2.2. Чертеж модельной плиты верха в сборе

2.3. Разрез формы и вид на нижнюю полуформу с установленными в

нее стержнями

1.1. Обоснование способа формовки

Формовка – это процесс изготовления разовых литейных форм. Это трудоемкий и ответственный этап всего технологического цикла изготовления отливок, который в значительной мере определяет их качество. Процесс формовки заключается в следующем:

Уплотнение смеси, позволяющий получить точный отпечаток модели в форме и придать ей необходимую прочность в сочетании с податливостью, газопроницаемостью и другими свойствами;

Устройство в форме вентиляционных каналов, облегчающих выход из полости формы образующихся при заливке газов;

Извлечение модели из формы;

Отделку и сборку формы, включая установку стержней.

В зависимости от размеров, массы и толщины стенки отливки, а также марки литейного сплава его заливают в сырые, сухие и химические твердеющие формы. Литейные формы изготавливают вручную, на формовочных машинах, полуавтоматических и автоматических линиях.

Так как данная отливка имеет вес менее 500 кг, то отливку будем заливать по-сырому . Заливка по-сырому является более технологичной, так как отпадает необходимость в сушке форм, что значительно ускоряет технологический процесс.

В условиях серийного производства можно использовать как ручную, так как и машинную формовку. Для изготовления данной отливки применим машинную формовку. Машинная формовка позволяет механизировать две основные операции формовки (уплотнение смеси, удаление модели из формы) и некоторые вспомогательные (устройство литниковых каналов, поворот опок и т.д.). При механизации процесса формовки улучшается качество уплотнения, возрастает точность размеров отливки, резко повышается производительность труда, облегчается труд рабочего и улучшается санитарно-гигиенические условия в цех, уменьшатся брак.

В качестве формовочной машины применим машину импульсного типа. В такой машине уплотнение смеси происходит за счет удара воздушной (газовой) волны. Сжатый воздух под давлением (6?10)*10 6 Па с большой скоростью поступает в полость формы. Под действием удара воздушной волны формовочная смесь уплотняется в течение 0.02-0.05 с. Оставшейся воздух удаляется через венты. Верхние слои формовочной смеси уплотняют подпрессовкой.

При использовании обычных песчано-глинистых смесей поверхностная твердость формы достигает 89-94 единиц. Максимальное уплотнение смеси соответствует разъему полуформы. Улучшение технологических параметров литейной формы повышает геометрическую точность отливок, снижает брак, улучшает санитарно-гигиенические условия труда за счет полного устранения вибрации и шума.

1.2. Обоснование положения детали в форме при заливке

Основной задачей при выборе положения отливки во время заливки, заключается в получении наиболее ответственных ее поверхностей без литейных дефектов. При выборе положения отливки в форме руководствуемся следующими рекомендациями:

Учитываем принцип затвердевания отливки: отливку располагаем массивными частями вверх, и устанавливаем над ними прибыли;

Основные обрабатываемые поверхности и наиболее ответственные части отливки располагаем вертикально;

Данное положение обеспечивает надежное удержание стержней в форме во время заливки, имеется возможность проверки толщины стенок отливки при сборке формы;

Тонкие стенки расположены снизу и вертикально по заливке, что благоприятно при заливке стали, путь металла к тонким частям самый короткий.

1.3. Обоснование выбора поверхности разъема формы и модели

Поверхность соприкосновения верхней и нижней полуформ называется поверхностью разъема формы. Она необходима для извлечения модели из уплотненной формовочной смеси и установки стержней в форму. Поверхность разъема может быть плоской и фасонной.

Выбор разъема формы определяет конструкцию и разъемы модели, необходимость применения стержней, величину формовочных уклонов, размер опок и т.д. При неправильном выборе поверхности разъема возможно искажение конфигурации отливки, неоправданное усложнение формовки, сборки.

Выбранная поверхность разъема формы удовлетворяет следующим требованиям:

Поверхность разъема формы и модели плоская, что наиболее рационально с точки зрения изготовления модельного комплекта;

Стержень располагается в нижней полуформе, при этом отпадает необходимость в подвешивании стержня в верхней полуформе, облегчается контроль за их установкой в форму, уменьшается возможность повреждения околознаковых частей;

Уменьшаются затраты на обрубку и зачистку отливки;

Позволяет сократить расход формовочной смеси из-за уменьшения высоты формы, так как данная поверхность разъема обеспечивает малую высоту формы;

Модель отливки не имеет отъемных частей.

1.4. Обоснование величины усадки и припусков на механическую обработку, уклонов, галтелей

Усадкой называется свойство металлов и сплавов уменьшать свой объем при затвердевании и охлаждении. Вследствие этого модель должна быть несколько больших размеров, чем будущая отливка. Уменьшение линейных размеров отливки в условиях определенного производства называют литейной усадкой. Ее величина для каждой конкретной отливки зависит от марки сплава, от ее конфигурации и устройства формы.

Для средних отливок из углеродистой стали (сталь 35Л) литейная усадка равна 1.6% .

Припуски на механическую обработку даются на всех обрабатываемых поверхностях отливки. Величина припуска зависит от положения поверхности при отливке, способа формовки и чистоты обработки поверхности, а также от величины отливки и самой обрабатываемой поверхности.

При машинной формовке ввиду большей точности литья припуски на обработку даются меньшие, чем при ручной формовке. Наибольшие припуски предусматриваются для поверхностей, которые при заливке обращены вверх, так как они больше всего засоряются неметаллическими включениями.

Определение припусков по ГОСТ 26645-85 .

номин. размер

класс точности

степень коробления

отклонения коробления

отклонения смещения

основной припуск

дополнительный припуск

общий припуск

ряд припусков

Формовочными называют уклоны, которые придаются рабочим поверхностям литейных моделей для обеспечения свободного извлечения их из форм или освобождения стержневых ящиков от стержней без разрушения в том случае, если конструкция детали не предусматривает конструктивные уклоны.

Величина уклона зависит от высоты стенки, материала модели и от способа формовки. Для машинной формовки металлические модели имеют уклон 0.5-1°. Принимаем 1° .

Галтелями называются закругления внутренних углов моделей для получения в отливке плавного перехода от одной поверхности к другой. Они улучшают качество отливки, способствуют равномерному ее охлаждению, уменьшают опасность появления горячих трещин в местах пересечения стенок и предотвращают осыпание формовочной смеси в углах формы при извлечении из нее модели. Благодаря правильно выполненным закруглениям наружных и внутренних стенок удается избежать возникновения усадочных раковин. Применение галтелей повышает усталостную прочность отливок в условиях работы при значительных знакопеременных нагрузках.

По требованию, указанному на чертеже, величина галтелей 2?3мм.

1.5. Определение конструкций и размеров знаков стержней. Проверка знаков на смятие

Литейными стержнями называют элементы литейной формы, изготавливаемые отдельно от полуформ по специальной (как правило) оснастке и предназначенные для получения в отливке отверстий и полостей, которые не могут быть получены от модели. Стержни, как правило, ставят в форму после сушки, чтобы увеличить их прочность и уменьшить газотворность.

Стержневые знаки служат для обеспечения правильного и надежного фиксирования стержня в форме и удаления из него газов во время заливки.

При проектировании стержней необходимо:

Определить границы стержней и их количество;

Обеспечить прочность за счет выбора соответствующего состава стержневой смеси или установки каркасов;

Выбрать способ изготовления, показать плоскость разъема стержневых ящиков и направление набивки;

Разработать систему вентиляции.

При конструировании стержней руководствуемся следующими соображениями:

Стержень располагается в нижней полуформе, так как на установку и крепление стержня в верхней опоке затрачивается в 5-6 раз больше времени, чем в нижней;

Избегаем односторонне посаженых стержней, для чего пользуемся приемом дублирования стержней; при этом исключается возможность их смещения под действием собственной массы или напора металла;

Конструкция формы исключает фиксирование одних стержней в знаках других, так как при этом суммируются ошибки их установки.

При изготовлении отливки данной детали используем один дублированный стержень:

Основные размеры стержня: L = 235мм, a = 704мм, b = 184мм.

Длина горизонтального знака из равна 80мм, что явно недостаточно для устойчивости дублированного стержня. Руководствуясь пунктом 3.4 ГОСТ 3606-80 увеличим длину знака до 240мм.

a = 6°, b = 8° .

Значения зазоров S 1 , S 2 и S 3 :

S 1 = 0.6мм, S 2 = 0.6мм, S 3 = 0.5* S 1 = 0.9мм.

Радиус скругления (переход от основной к знаковой формообразующей поверхности): r = 5мм .

Для получения гнезд под подшипники рассчитаем выступы на дублированном стержне:

Для нижних по заливке: высота знака h = 35мм ,

Для верхних по заливке: высота знака h 1 = 0.4*h = 0.4*35 = 14мм .

Формовочные уклоны на знаковой формообразующей поверхности:

a = 7°, b = 10° .

Значения зазоров S 1 и S 2:

Для нижних знаков: S 1 = 0.3мм, S 2 = 0.4мм .

Для верхних: S 1 = 0.2мм, S 2 = 0.4мм :

Радиус скругления: r = 2?3мм .

При формовке по-сырому для предотвращения разрушения кромок формы при установке стержней ГОСТом 3606-80 рекомендуется выполнять противообжимные пояски для горизонтальных стержней: a = 12мм, b = 2 мм.

Проверка знаков на смятие

Нижний знак.

Прочность смеси на сжатие:

где P – реакция на опоре, кг,

где S н.зн. – опорная поверхность нижнего знака, см 2 ,

n – количество знаков в нижней полуформе, n = 5.

Масса стержня:

G ст = V ст * g ст, (3)

где V ст – объем стержня, г/см 3 ,

g ст – плотность стержневой смеси, g ст = 1.65г/см 3 .

G ст = 95637.166 * 1.65 = 157801.32г.

Опорная поверхность нижнего знака:

Условие выполнено.

Верхний знак.

где S в.зн. – опорная поверхность верхнего знака, см 2 ,

где P ст – подъемная сила, действующая на стержень, г,

m – количество знаков в верхней полуформе, m = 5.

P ст = V * ст * (g м - g ст) –V зн *g зн, (8)

V * ст – объем стержня, на который действует подъемная сила,

V зн - объем стержня, на который не действует подъемная сила, см 3 ,

P ст = 52300.7*(7 – 1.65) – 43336.466*1.65 = 208303.576г,

P 1 = 208303.576/5 = 41660.715г;

Опорная поверхность верхнего знака:

Условие выполнено.

1.6. Расчет литниковой системы

Назначение литниковой системы

Литниковая система (л.с.) должна обеспечить спокойную, равномерную и непрерывную подачу металла в заранее определенные места отливки.

Конструкция л.с. должна создавать условия, препятствующие засасыванию воздуха потоком металла.

Л.с. должна задерживать все неметаллические включения, попавшие в поток металла.

Одной из важнейших функций л.с. является заполнение формы с заданной скоростью: при очень большой скорости заливки происходит размыв стенок формы и каналов самой л.с., а при слишком медленной заливке – значительное охлаждение металла и образование спаев, неслитин, недоливов.

Л.с. должна способствовать выполнению принципа равномерного или направленного затвердевания отливки. Она служит для частичного питания жидким металлом отливки в начальный момент ее затвердевания.

Нормальная л.с. состоит из следующих основных элементов: приемное устройство, стояк, зумпф, литниковый ход, питатели.

1.Приемные устройства

Назначение их состоит в том, чтобы обеспечить попадание струи из ковша в каналы л.с. Также эти устройства гасят энергию струи металла из ковша и частично улавливают шлак, попавший в поток из ковша.

В качестве приемного устройства применим литниковую воронку. Литниковые воронки применяются при заливке всех стальных отливок, независимо от их массы (из-за заливки из стопорных ковшей, а также для уменьшения поверхности контакта металла с литниковой системой). .

Он представляет собой вертикальный канал л.с., по которому металл опускается от уровня чаши до того уровня, на котором он подводится к отливке.

Очень часто по условиям формовки (особенно при машинном изготовлении форм) требуется установка расширяющихся книзу стояков. В таких стояках может происходить подсос воздуха, и требуется установка дросселей, но так как сечение питателей наименьшее (то есть л.с. заполненная), то дроссели не нужны.

Очень ответственным местом в л.с. является зумпф – это расширение и углубление под стояком. Его всегда нужно делать при устройстве л.с. В нем образуется болотце металла, гасящего энергию струи из стояка и тем самым предотвращающего разбрызгивание металла. Кроме того, выходя из зумпфа в литниковый ход, металл направлен снизу вверх. При этом направление движения металла совпадает с направлением естественного движения шлаковых частиц, попавших из ковша в металл, и они быстрее выносятся к потолку литникового хода, то есть зумпф позволяет сделать короче литниковый ход и уменьшить расход металла на л.с.

4. Литниковый ход

Он представляет собой горизонтальный канал, чаще всего трапециевидного сечения, устанавливаемый на плоскости разъема формы. Основным его назначением является распределение потока металла из стояка по отдельным питателям, обеспечивая его равномерный расход.

5. Питатели

Последний по ходу металла элемент л.с. – питатели. Их количество и расположение зависят от характера заливаемых деталей. Сечение питателей должно быть таким, чтобы они легко отламывались от отливки.

Когда металл подводится несколькими питателями к отливке, истечение его из разных питателей, удаленных на различное расстояние от стояка, разное. Дальние питатели пропускают большее количество металла, чем ближние. Это объясняется тем, что в крайних питателях динамический напор частично переходит в статический, поэтому скорость истечения металл из этих питателей выше.

Выбор типа литниковой системы

Решающими факторами, от которых зависит выбор типа л.с., являются: конструкция отливки, принятая в цехе технология и свойства сплава, из которого отливается заготовка.

Для изготовления стальных отливок применяются л.с. максимальной простоты и минимальной протяженности, так как сталь при охлаждении резко теряет жидкотекучесть.

Выбранная л.с. относится к верхним л.с. с горизонтальным расположением питателей. В такой л.с. металл подводится в верхнюю часть отливки и к концу заполнения формы в отливке создается температурное поле, соответствующее принципу направленного затвердевания (снизу холодный, а сверху горячий металл).

Выбор места подвода металла к отливке

При выборе места подвода металла к отливке обязательно учитывается принцип затвердевания отливки. Так как отливка по своей конструкции склонна к направленному затвердеванию, то металл лучше подводить в ее массивные части. Протекающим металлом форма в местах подвода разогревается, в тонкие части отливки металл подходит охлажденным и скорость их затвердевания еще больше увеличивается. Массивные части, разогретые горячим металлом, затвердевают медленнее. Такое температурное поле способствует образованию в отливке (в ее массивном или тепловом узле) концентрированной усадочной раковины, которую легко перевести в прибыль.

Металл подводим вдоль стенки, в этом случае не происходит прямого удара струи металла в стенку формы и вероятность ее размыва уменьшается.

Для определения размеров сечения элементов л.с. нужно задаться соотношением их размеров. Для л.с. стальных отливок массой до 1т.:

SF n: SF л.х. : F ст = 1: 1.15: 1.3 . (12)

Самым узким местом является питатель, поэтому его расчет ведем по формуле Озанна:

где SF n - суммарная площадь сечения питателей, см 2 ;

G – полная масса металла в форме вместе с л.с. и прибылями, кг;

g - удельный вес жидкого металла, для стали g = 7г/см 3 ;

m - коэффициент расхода л.с.;

t - время заливки, с;

H р – средний, расчетный напор, действующий в л.с. во время заливки, см;

g – ускорение силы тяжести, g = 981см/с 2 .

В случае заливки чугуна и стали формула (11) имеет вид:

Так как данная отливка требует установки прибылей, то металлоемкость отливок определяется по формуле:

где G отл – масса отливки, кг;

ТВГ – технологический выход годного, для данной отливки ТВГ = 0.65 ;

Масса отливки определяется по формуле:

G отл = 2*(G дет + G пр.м.о.) (16)

где - G дет – масса детали, G дет = 42.5кг;

G пр.м.о. – масса металла на припуски и механическую обработку, кг;

Припуски на механическую обработку составляют 7 –10% от массы детали, принимаем 9%.

G пр.м.о. = 0.09*G дет. = 0.09*42.5 = 3.83кг, (17)

G отл = 2*(42.5 + 3.83) = 92.66кг

Расчетный напор определяется по формуле Дитерта:

где H – начальный напор, или расстояние от места подвода металла к

отливке до носка ковша, см;

P – расстояние от самой верхней точки отливки до уровня подвода, см;

С – высота отливки по положению при заливке, см.

Чтобы определить Н, нужно знать высоту опок Н в.о. и Н н.о. Их размеры рассчитываются в пункте 1.9.

Рис.1. Схема к определению расчетного напора:

1 – носковый ковш;

2 – приемное устройство (воронка);

3 – питатель;

4 – отливка;

5 – стержень.

Н = Н в.о. + h в – b/2, (19)

где Н в.о. – высота верхней опоки, Н в.о. = 15см;

h в – высота уровня металла в воронке, h в =6см (высота воронки Н в = 75 мм) ;

b - высота стержня, b = 18.4 см.

Н = 15 + 6 – 18.4/2 = 11.8 см.

Р = h м.в. – b/2, (20)

где h м.в. – высота модели верха, h м.в. = 26.25 см.

Р = 26.25 – 9.2 = 17.05 см.

С = h м.в. + h м.н. (21)

где h м.н. – высота модели низа, h м.н. = 15.5 см.

С = 26.25 + 15.5 = 41.75 см.

Тогда рабочий напор равен:

Коэффициент расхода л.с.:

Для соотношения (10):

Время заливки определяется по формуле Беленького, Дубицкого, Соболева:

где S – коэффициент времени, для стальных отливок S = 1.4?1.6 , принимаем S = 1.5;

d - толщина определяющей стенки, d = 15мм;

G – масса отливки вместе с л.с., кг.

Тогда SF п равна:

Скорость заливки:

Общая формула для определения площадей сечения остальных элементов л.с.:

F i = F п *k i *P i , (25)

где F п – площадь одного питателя, см 2 ;

k i – отношение площади i – ого элемента л.с. к суммарной площади питателей, обслуживаемых i-ым элементом;

P i – число питателей, обслуживаемых i – ым элементом, P i = 4.

Для питателя:

Для литникового хода:

F л.х. = 4.21*1.15*4 = 19.36см 2 .

Для стояка:

F ст = 4.21*1.3*4 = 21.89см 2 .

Рис.2. Сечения элементов литниковой системы

1.7. Расчет размеров прибылей и холодильников

Усадочные раковины образуются в отливках вследствие уменьшения объема жидкого металла при охлаждении и, в особенности, при переходе его из жидкого состояния в твердое. Они относятся к числу основных пороков отливок, с которыми литейщикам приходится повседневно работать. Для борьбы с усадочными раковинами применяются литейные прибыли, представляющие собой резервуары жидкого металла, из которых происходит пополнение объемной усадки отдельных частей отливки, расположенных вблизи прибыли.

От эффективности работы прибыли зависит качество отливки и процент выхода годного литья. Установка прибылей способствует выполнению принципа направленной кристаллизации.

Прибыль должна:

Обеспечить направленное затвердевание отливки к прибыли; поэтому ее надо устанавливать на той части отливки, которая затвердевает последней;

Иметь достаточное сечение, чтобы затвердеть позже отливки;

Иметь достаточный объем, чтобы усадочная раковина не вышла за пределы прибыли;

Иметь конструкцию, обеспечивающую минимальную поверхность.

Холодильники, как правило, применяются для регулирования скорости затвердевания различных частей отливки с целью достижения принципа равномерного или одновременного затвердевания.

Применение верхней л.с. позволяет получить в отливке температурный градиент соответствующий направленному затвердеванию. Таким образом, на верхние по заливке массивные части (разогретые заливаемым металлом) устанавливаем прибыли. В нижние по заливке массивные части попадет холодный металл, поэтому эти части не требуют дополнительного охлаждения, и, соответственно применения холодильников.

Расчет прибылей по методу проф. Андреева

Большинство способов расчета прибылей основаны на "методе вписанных окружностей". Суть его заключается в том, что на листе бумаги в натуральную величину вычерчивается термический узел и в него вписывают окружность так, чтобы она касалась стенок отливки. Окружность диаметром d и есть размер термического узла (рис. 3).

Рис. 3. Термический узел.

Прибыль №1

D – наружный диаметр узла, D = 23 см;

D o – внутренний диаметр узла, D o = 18 см.

Диаметр прибыли, см:

D п = d o + d 1 , (28)

D п = 1.0 + 3.18 = 4.18см

Высота прибыли, см:

Н п = d o + 0.85* D п, (29)

Длина прибыли: L п1 = 32.18см.

Прибыль №2

Диаметр круга, вписанного в узел , см:

где a – толщина боковой стенки, a = 1.5 см;

D – наружный диаметр узла, D = 20 см;

D o – внутренний диаметр узла, D o = 15 см.

Диаметр кольца компенсирующего металла, см:

где Н – высота питаемого узла, Н = 6.5 см.

Диаметр прибыли, см:

D п = d o + d 1 ,

D п = 1.0 + 3.18 = 4.18см

Высота прибыли, см:

Н п = d o + 0.85* D п,

Н п = 1.0 + 0.85*4.18 = 4.55см

Длина прибыли: L п2 = 29.04см.

Объем прибылей

Масса прибылей:

G пр = (V пр1 + V пр2)*r ж.ме. , (32)

G пр = 2*(551.59 + 497.77)*7 = 14691.04г.

Выход годного равен:

где G л.с. – масса л.с., G л.с. равен 10?15% от G отл, принимаем 12%.

G л.с. = 0.12*92.66 = 11.12кг

Так как ТВГ значительно больше принятого, то скорректируем объем прибылей для получения принятого ТВГ.

Требуемая масса прибылей равна:

Суммарный объем таких прибылей равен:

Тогда скорректированные параметры прибылей равны:

Н п = 10.5см.

Масса этих прибылей:

G пр = 2*(1450.45 + 1308.92)*7 = 38631.18г.

Тогда конечный ТВГ равен:

Что очень близко к принятому.

1.8. Обоснование применяемой оснастки

Основную массу фасонных отливок из различных литейных сплавов изготовляют в разовых песчаных формах. Для получения таких форм используют специальную модельно–опочную оснастку, необходимую для получения частей формы, стержней и их сборки. Комплект модельно–опочной оснастки включает: модели и модельные плиты для изготовления по ним частей формы, стержневые ящики для изготовления стержней, вентиляционные плиты для образования вентиляционных каналов в стержнях, плоские и фигурные (драйеры) сушильные плиты для сушки стержней, опоки, приспособления для контроля формы в процессе сборки, а также холодильники, штыри для соединения опок и другой инструмент.

Моделями называют приспособления, предназначенные для получения в литейных формах полостей, конфигурация которых соответствует изготовляемым отливкам.

Для машинной формовки модели монтируют на специальных плитах, которые называют модельными плитами. Для серийного производства данной отливки используем одностороннюю наборную плиту (модель, расположенную только на одной верхней стороне, крепят к плите болтами по ГОСТ 20342-74).

В условиях серийного производства отливок используются металлические модели и плиты. Они имеют следующие преимущества: долговечность, большую точность и более гладкую рабочую поверхность. Их используют при машинной формовке, которая предъявляет определенные требования к конструкции и качеству модельной оснастки. Материалом для модели данной отливки, а также для плиты служит сталь марки Ст 15Л (высокая прочность и износостойкость).

Конструкция модельной плиты (0280-1391/002 ГОСТ 20109-74) зависит главным образом от типа машины, на которой будет изготовляться полуформа, конструкции отливки, получаемой по данному модельному комплекту. Модельная плита по периметру имеет вентиляционные отверстия (венты), необходимые для удаления воздуха при импульсной формовке. Количество вент определяется соотношением, диаметр венты 5?6мм.

Для фиксирования опоки на плите они имеют 2 штыря: центрирующий (0290-2506 ГОСТ 20122-74), который предохраняет опоку от смещений в горизонтальном направлении, и направляющий (0290-2556 ГОСТ 20123-74), предохраняющий опоку от смещений относительно поперечной оси плиты.

Конструкция стержневого ящика зависит от формы и размеров стержня и способа его изготовления. По конструкции стержневые ящики подразделяют на неразъемные (вытряхные) и разъемные.

Выбор направления заполнения ящика смесью зависит, прежде всего, от метода изготовления стержня, а также от установки каркасов и холодильников.

В серийном производстве применяют металлические стержневые ящики. Их делают чаще разъемными с горизонтальным и вертикальным разъемом.

Для изготовления стержней данной отливки применяем пескодувный способ. Для пескодувных машин применяют разъемные стержневые ящики. При заполнении смесью они испытывают избыточное давление воздуха, абразивное действие песчано-воздушной струи, а также усилие поджима ящика к надувному соплу машины, поэтому они должны обладать повышенной жесткостью, прочностью, быть герметичными по плоскости разъема и наддува.

Для производства данной отливки в условиях серийного производства и импульсной формовки применим опоки для автоматических линий. Такие опоки имеют усиленные стенки без вентиляционных отверстий. Особенностью опок для формовки на автоматических линиях является их не взаимозаменяемость, т.е. опоки для низа и верха разные. Опока для низа не имеют втулок для скрепляющих штырей. Вместо втулок опока низа имеет коническое отверстие, в котором закрепляется штырь.

Опока верха имеет центрирующую (0290-1053 ГОСТ 15019-69) и направляющую (0290-1253 ГОСТ 15019-69) втулки.

Для сушки стержней применяем сушильные плиты с ровной опорной поверхностью. Основное требование к ним максимальная жесткость конструкции при минимальной массе. Для выхода газа из стержней в плитах предусмотрена система отверстий.

Для выполнения в стержне вентиляционных каналов применяют вентиляционные плиты. Вентиляционные каналы в стержне всегда должны быть расположены вполне определенно, особенно, если они являются частью общей вентиляционной системы.

Шаблоны предназначены для контроля размеров стержней и форм, предварительной сборки нескольких стержней в один общий узел, проверки установки стержней в форме и так далее.

1.9. Расчет размеров опок, массы груза

Рис.3. Расстояние между отливкой и отдельными элементами формы

Длина опоки:

L о = L м + 2*c + d ст, (35)

где L м – длина модели, L м = 836мм;

d ст – диаметр стояка, мм.

L o = 836 + 2*50 + 53 = 989мм

По ГОСТ 2133-75 длина опоки L o = 1000мм .

Ширина опоки:

B o = B м + 2*c, (37)

где B м – ширина модели, B м = 752мм;

с – расстояние между моделью и стенкой опоки, с = 50мм ;

B o = 752 + 2*50 = 852мм.

По ГОСТ 2133-75 при длине опоки L o = 1000мм B o = 800мм .

Высота нижней опоки:

H н.о. = h м.н. + b , (38)

где h м.н. – высота модели низа, h м.н. = 190мм;

b – расстояние между низом модели и низом формы, b = 70мм .

H н.о. = 190 + 70 = 260мм.

По ГОСТ 2133-75 высота нижней опоки Н н.о. = 250мм .

Высота верхней опоки:

H в. о. = h м. в. + a, (39)

где h м.в. – высота модели верха, h м.в. = 262мм;

b – расстояние между верхом модели и верхом формы, b = 70мм .

H в.о. = 262 + 70 = 332мм.

По ГОСТ 2133-75 высота верхней опоки H в.о. = 300мм .

Подъемная сила, действующая на верхнюю полуформу:

P ф = (SF i *H i)*g м + P ст. (40)

где Р ст – подъемная сила, действующая на стержень, Р ст = 208303.576г.

F i – горизонтальная проекция поверхности элемента литейной формы, находящегося под давлением столба металла высотой Н i ;

Н i – высота столба металла, измеряемая от поверхности F i , до уровня металла в литниковой воронке;

g м – удельный вес жидкого металла, для стали g м = 7г/см 3 .

SF i *H i = {*25.3 + [(7.5 2 – 6.5 2)*3.14]*20.3/2 + *9.8 + 22*.08*27 + *20.3 + *20.3 +*34.8}*2 = 46306.084.

Тогда подъемная сила, действующая на верхнюю полуформу равна:

P ф = 46306.084*7 + 208303.576= 532446.164 г.

Масса груза:

P гр = P ф *K – Q в.п.ф. , (41)

где K – коэффициент запаса, учитывающий явление гидравлического удара при контакте металла с потоком формы, K=1.3 – 1.5, принимаем K=1.4;

Q в.п.ф. – масса верхней полуформы, г,

Q в.п.ф. = Q в.п. + Q см.в.о. , (42)

Q в.п. – масса металла опоки, т.к. масса опоки мала по сравнению с

массой смеси в ней, то Q в.п. = 0;

Q см.в.о. – масса смеси в верхней полуформе, г,

Q см.в.о. = (L*B*H в.о. – V м.в.)*g см, (30)

где g см – плотность формовочной смеси, g см = 1.5 – 1.8г/см 3 , принимаем

g см = 1.65 г/см 3 .

V м.в. – объем модели верха, см 3 ;

V м.в. = {(25 2 + 16 2)*10.7*3.14/4 + 20.5*33*10.7 + 22*0.8*9 + (7.5 2 – 6.5 2)*6.5* 3.14/2 + 1450.45 + 1308.92 + (18.2*1.9 + 6.2*1.9)*15.7 + (5*5.5 + 5*5.5 +3*5.5)*15.7 +(11.5*5.5 + 10*5.5 – 2*3.14*1.5 2)*1.2 + 70.4*12}*2 = 41038.59 см 3 .

Q в.п.ф. = Q см.в.о. = (100*80*30 – 41038.59)*1.65 = 328286.33г.

Тогда масса груза:

P гр = 532446.164*1.4 – 328286.33 = 417138.3г.

1.10. Выбор формовочных и стержневых смесей

Формовочными материалами называют материалы, применяемые для изготовления литейных форм и стержней.

Формовочные материалы в зависимости от условий их применения должны отвечать следующим требованиям:

Обеспечивать необходимую прочность смеси в сыром и сухом состояниях;

Предотвращать прилипаемость смеси к модельной оснастке;

Придавать смеси текучесть, необходимую для воспроизведения контуров модели и стержневого ящика;

Обладать низкой газотворной способностью;

Обеспечивать податливость формы или стержня при затвердевании и охлаждении отливки;

Обладать достаточной огнеупорностью и низкой пригораемостью к отливке;

Обеспечивать хорошую выбиваемость формы и стержня;

Обладать низкой стоимостью, быть недефицитными и безвредными для окружающих;

Иметь низкую гигроскопичность;

Быть долговечными.

Формовочные пески являются основными наполнителями формовочных и стержневых смесей. В качестве формовочных в большинстве случаев применяют кварцевые пески, состоящие из зерен кремнезема (Si 2 O) определенной величины и формы. Широкое применение этих песков объясняется тем, что они в высокой степени соответствуют условиям работы литейной формы.

Формовочные глины применяют в качестве минерального связующего в формовочных и стержневых смесях. Формовочными глинами называют горные породы, состоящие из тонкодисперсных частиц водных алюмосиликатов, обладающих связующей способностью и термохимической устойчивостью и способных обеспечить прочные, не пригорающие к поверхности отливок формовочные смеси. При формовке по-сырому отдается предпочтение бентонитовым глинам.

При изготовлении стержневых смесей добавка формовочной глины не обеспечивает получения надлежащей прочности стержней, поэтому в смеси вводят другие связующие добавки, обладающие более высоким значением удельной прочности. Такие добавки называются связующими материалами или крепителями. Связующие материалы должны обладать следующими требованиями:

При приготовлении формовочных и стержневых смесей равномерно распределяться по поверхности зерен формовочного песка за определенное время;

Обеспечивать пластичность смеси;

Обеспечивать быстрое высыхание стержня и формы;

Не обладать гигроскопичностью;

Обладать малой газотворной способностью при сушке и заливке расплава в форму;

Обеспечивать податливость формы и стержня;

Не снижать огнеупорность формовочной и стержневой смеси;

Легко разрушаться при выбивке формы;

Быть безвредными для окружающих, дешевыми и недефицитными.

В качестве связующих материалов используем крепители Б-2 и Б-3. Эти крепители рекомендуется применять для стержневых смесей, из которых изготавливают стержни IV класса, к которым относятся стержни для данной отливки. К этому классу относят стержни несложной конфигурации, образующие внутренние обрабатываемые полости в отливках или внутренние необрабатываемые поверхности, к которым не предъявляются высоких требований .

Крепители Б-2 (декстрин, пектиновый клей) и Б-3 (патока, сульфидно-спиртовая барда) обладают многими общими технологическими свойствами, что позволяет заменять эти материалы друг другом при незначительном изменении состава смеси.

Стержневые смеси и стержни на крепителях Б-2 и Б-3 отличаются следующими свойствами:

  1. После сушки стержни на крепителях Б-2 имеют достаточно высокую прочность.
  2. Прочность сухих и сырых стержней резко увеличивается при добавлении в состав смеси глины.
  3. Текучесть смесей умеренная.
  4. Температура сушки стержней 160°С - 180°С.
  5. Стержни обладают достаточной поверхностной прочностью.
  6. Газотворная способность смесей невелика.
  7. Стержни для снижения пригораемости подвергают окраске.
  8. Выбиваемость стержней удовлетворительная, если в смесях не содержится глины.

Классификация формовочных смесей

Качество и стоимость отливок в значительной степени зависят от правильного выбора состава и технологических свойств формовочной смеси. При выборе состава смеси учитывают:

Род заливаемого металла, сложность и назначение отливки;

Наличие необходимых материалов;

Серийность производства;

Технологию изготовления и сборки форм;

Планируемую себестоимость.

По виду заливаемого металла смеси делятся на 3 группы: для стальных, чугунных и отливок из цветных сплавов. Такое деление обусловлено, прежде всего, температурой заливки металла в форму. Для стали, эта температура составляет »1550°С .

Независимо от рода металла формовочные смеси делятся:

По характеру использования – на единые, облицовочные и наполнительные;

По состоянию формы перед заливкой – на смеси для форм, заливаемых в сыром состоянии (формовка по-сырому), и смеси для форм, заливаемых в сухом состоянии (формовка по-сухому).

Если смесь заполняет весь объем формы, то она называется единой. Такие смеси применяют при машинной формовке в цехах серийного и массового производства. Поскольку эти смеси непосредственно воспринимают агрессивное воздействие металла, они должны иметь высокие технологические свойства. Поэтому единые смеси готовят из наиболее огнеупорных и термохимически устойчивых формовочных материалов, которые обеспечивают долговечность смесей.

Применение единых смесей позволяет сократить цикл приготовления формы и тем самым повысить производительность формовочных агрегатов.

Для единых смесей особенно высокие требования предъявляются по газопроницаемости – эти смеси применяются при формовке по-сырому и поэтому обладают высокой газотворной способностью. Отсюда вытекает условие, чтобы требуемая прочность достигалась при минимальном содержании глины, что дает возможность снизить влажность смеси. Поэтому для единых смесей чаще используют бентонитовые глины, имеющие наибольшую связующую способность. В сочетании с добавками крепителей Б-2 и Б-3 бентониты позволяют получить формовочные смеси с влажностью 1.8 – 2.5%. Иногда воду заменяют органическими растворителями (например, этиленгликолем), при этом резко улучшается чистота поверхности и снижается брак отливок.

Формовочные смеси для стального литья

Формовочные смеси для стального литья отличаются от смесей для чугунного литья большей огнеупорностью, так как температура заливки стали превышает 1500°С. Высокая температура заливки способствует увеличению химического и термического пригара, поэтому трудности получения оливок с чистой поверхностью увеличиваются.

Для приготовления формовочных смесей применяют в основном обогащенные и кварцевые пески классов 1К и 2К с содержанием кремнезема не менее 95%. Глинистые пески для изготовления форм стального литья не применяют.

При изготовлении форм для отливки малой массы предпочтительно применяют кварцевые пески зернистостью 016А 02А, что обеспечивает низкую шероховатость поверхностей отливок.

Состав смеси :

Песок 1К016А - 8%,

Оборотная смесь –90%,

Сульфитно-дрожжевая бражка – 1%,

Глина – 1%.

Влажность смеси: 3.5?4.5%.

Стержневые смеси для стального литья

Стержни в процессе заливки испытывают значительно большие термические и механические воздействия по сравнению с формой, поскольку обычно они окружены расплавом. По этой причине к стержневым смесям предъявляются более жесткие требования.

Прочность стержней в сухом состоянии и поверхностная твердость должны быть выше, чем у формы. Стержневые смеси должны иметь большую огнеупорность, податливость и небольшую гигроскопичность, особенно при формовке по-сырому, высокую газопроницаемость и малую газотворную способность, хорошую выбиваемость.

Состав смеси :

Песок 1К016 – 97?98%;

Глина – 2?3%;

Крепитель Б-3 (сульфидная барда) – 4.3%;

Связующее СБ (или КО) – 3.6%;

Влажность – 2.8?3.4%.

1.11. Режим сушки форм и стержней

Формы и стержни сушат с целью увеличения их газопроницаемости, прочности, уменьшения газотворной способности и, в конечном счете, повышения качества отливок. Режим сушки стержней и форм устанавливают для различных групп стержней и форм опытным путем.

Так как стальные отливки массой до 500кг целесообразно заливать по-сырому, то сушку форм производить не будем.

Процесс сушки стержней условно можно разделить на 3 этапа. На первом этапе прогревается вся толща стержня. Так как теплопроводность влажной смеси значительно больше, чем сухой, то в этот период сушки необходимо по возможности стремиться удерживать влагу в стержнях и не давать ей быстро испаряться.

На втором этапе сушки необходимо быстро повысить температуру до максимальной и выдерживать стержни при этой температуре в течение некоторого времени.

На третьем этапе сушки стержни охлаждаются до температуры разгрузки. Стержни в этот период не только охлаждаются, но и досушиваются за счет аккумулированной в них теплоты.

Для хорошей сушки стержней необходимы следующие условия:

Постоянный подъем температуры в камере сушила, а затем поддержание равномерной максимально допустимой температуры в течение сушки;

Колебания температуры в различных зонах рабочего объема сушила не должны превышать при сушке 10 - 15°С;

Обеспечение равномерного движения газов во всем объеме сушила со скоростью 1.8 – 2.2м/с.

Стержни на крепителях Б-2 и Б-3 сушат при 160 - 180°С. Эти крепители твердеют в результате потери растворителя при испарении во время нагрева (тепловой сушки). Поэтому режим сушки стержней на этих крепителях должен быть таким, чтобы они сохраняли небольшое количество влаги.

Продолжительность сушки стержней составляет 3.0 – 7.0ч .

Карта технологического процесса

Список литературы

  1. Литейное производство: Учебник для металлургических специальностей вузов. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1987
  2. Титов Н.Д., Степанов Ю.А. Технология литейного производства: Учебник для машиностроительных техникумов. – 2-е изд. перераб. – М.: Машиностроение, 1978
  3. Абрамов Г.Г., Панченко Б.С. Справочник молодого литейщика. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1991
  4. Климов В.Я. Проектирование технологических процессов изготовления отливок: Учебное пособие. – Новокузнецк: СМИ, 1987
  5. Климов В.Я. Курсовое проектирование по технологии литейной формы. – Новокузнецк: СМИ, 1979
  6. Аксенов П.Н. Литейное производство: Учебник для машиностроительных техникумов. – 3-е изд. – М.: Машиностроение, 1950
  7. ГОСТ 26645-85. Отливки из металлов и сплавов. Допуски размеров, массы и припуски на механическую обработку. – М.: Государственный комитет СССР по стандартам, 1986
  8. ГОСТ 3606-80. Комплекты модельные. Стержневые знаки. Основные размеры. – М.: Государственный комитет СССР по стандартам, 1980
  9. ГОСТ 2133-75. Опоки литейные. Типы и основные размеры. – Государственный стандарт СССР
  10. Климов В.Я. Проектирование литниковых систем: Учебное пособие. – Новокузнецк: СМИ,1993
  11. Климов В.Я., Князев С.В., Куценко А.И. Формовочные материалы и смеси: Учебное пособие. – Новокузнецк: СМИ, 1992
  12. Климов В.Я., Антонов В.П., Кувыкин Ю.Ф. Проектирование прибылей: Учебное пособие. – Новокузнецк: СибГГМА, 1995
  13. Василевский П.Ф. Технология стального литья. М.: Машиностроение, 1974
  14. Василевский П.Ф. Литниковые системы стальных отливок. МАШГИЗ, 1956

Литьем можно получить детали массой от нескольких граммов до сотен тонн, размерами от нескольких миллиметров до десятков метров, самой сложной формы, которую нельзя получить другими методами. Литью поддаются самые различные сплавы, как пластичные, так и хрупкие. Литьем получают заготовки с минимальными припусками на обработку, а в некоторых случаях детали, не требующие ее вообще, что значительно сокращает расход металла и объем механической обработки. В СССР на долю стального литья в общем балансе отливок приходится около 23%, чугунного -72 и цветных сплавов - 5%. Продукцией литейного производства для судостроения являются крупные стальные отливки: форштевни, ахтерштевни, якоря, цепи и др. Чаще их выполняют предприятия, имеющие собственное литейное производство и литейный цех. Суть литейного производства состоит в том, что фасонные детали (заготовки) получают заливкой жидкого металла в литейную форму, полость которой соответствует их размерам и форме. После кристаллизации металла литую деталь (заготовку), называемую отливкой, удаляют из литейной формы и отправляют на последующую обработку. Применяют формы разового и многократного использования. Технологический процесс изготовления отливок в разовых формах складывается из ряда операций, которые осуществляются в соответствующих отделениях литейного цеха (рис. 4.1).


Рис. 4.1. Схема технологического процесса изготовления отливок в разовых формах

Наряду с требуемыми механическими, физическими и химическими свойствами литейные сплавы должны обладать определенными технологическими свойствами, главными из которых являются жидкотекучесть, усадка, склонность к ликвации и газопоглощению.

Жидкотекучесть - способность жидкого металла заполнять щелевидные полости литейной формы и четко воспроизводить очертания отливки. При хорошей жидкотекучести металл заполняет всю полость формы, какой бы сложной она ни была, а при недостаточной - образует недоливы в тонких сечениях отливки. Жидкотекучесть зависит от химического состава и температуры заливаемого сплава. Фосфор, кремний и углерод улучшают ее, а сера ухудшает. Повышение температуры жидкого металла улучшает жидкотекучесть.

Усадка - уменьшение объема металла и линейных размеров отливки в процессе ее кристаллизации и охлаждения в твердом состоянии.

Ликвация - неоднородность химического состава сплава по сечению отливки.

Газопоглощение - способность литейных сплавов в жидком состоянии растворять кислород, азот и водород, причем их растворимость растет с перегревом расплава. Залитый в форму газонасыщенный расплав охлаждается, понижается растворимость газов, и они, выделяясь из металла, могут образовать в отливке газовые раковины.

Величина напряжений, образование раковин и пористости зависят от правильного сопряжения и оформления углов отливки. При конструировании отливки должны быть соблюдены равностенность; наличие формовочных уклонов на вертикальных стенках, перпендикулярных плоскости разъема формы; плавность переходов при сопряжении стенок; наличие галтелей и др.

Современное металлургическое производство дает два вида конечных продуктов. Одним является прокат, представляющий собой профильный металл (прутки с постоянным поперечным сечением) - рельсы, балки, швеллеры, круглое и квадратное железо, полосовое железо, листовое железо. Прокат изготовляется из литых слитков стали, выплавляющихся в сталеплавильных цехах. Другим видом конечного продукта являются литые заготовки.

На общей схеме современного металлургического процесса, изображенной на рис. 1, видно, что добытая из рудников железная руда поступает на горно-обогатительные фабрики для удаления из нее части пустой породы; добытый в шахтах уголь направляется на коксохимические заводы для превращения коксующегося угля в кокс. Обогащенная руда и кокс загружаются в доменные печи, выплавляющие чугун. Жидкий чугун передается частично в литейные цехи, частично в сталеплавильные (кислородно-конвертерные, мартеновские, электросталеплавильные). В литейных цехах изготовляют различные по форме заготовки, а в сталеплавильных цехах отливают слитки, идущие затем в прокатные цехи для изготовления металлопроката.

Рис. 1. Схема современного металлургического процесса

Рис. 2. Литейная форма и ее элементы. Последовательность изготовления отливки в песчаной форме:
а - чертеж отливки; б - модель отливки; в - укладка верхней половины модели на нижнюю и установка верхней опоки; г - стержневой ящик; д - стержень; е -извлечение из полуформ половин модели; ж - установка верхней полуформы на нижнюю; з - отливка с литниками; 1 - верхняя и нижняя половины модели; 2 - модель литниковой системы; 3 - верхняя опока; 4 - нижняя опока; 5-формовка стержня; 6 - стержень


Рис. 3. Последовательность изготовления отливок

В чем же суть литейной технологии? Чтобы изготовить отливку, нужно проделать следующее.

1) произвести расчет: сколько каких материалов нужно ввести в шихту для их плавки. Подготовить эти материалы. Разделать их на куски допустимых размеров. Отсеять мелочь. Отвесить нужное количество каждого компонента. Загрузить материалы в плавильное устройство (процессы шихтовки и загрузки шихты);
2) провести плавку. Получить жидкий металл необходимой температуры, жидкотекучести, должного химического состава, без неметаллических включений и газов, способный при затвердевании образовать мелкокристаллическую структуру без дефектов, с достаточно высокими механическими свойствами;
3) до окончания плавки приготовить литейные формы (для заливки в них металла), способные, не разрушаясь, выдерживать высокую температуру металла, его гидростатическое давление и размывающее действие струи, а также способные пропускать через поры или каналы выделяющиеся из металла и образующиеся вновь газы (процесс формовки);
4) произвести выпуск металла из печи в ковш. Осуществить транспортировку ковша с металлом к литейным формам. Произвести заливку форм жидким металлом, не допуская перерывов струи и попадания в форму шлака;
5) после затвердевания металла раскрыть формы и извлечь из них отливки (процесс выбивки отливок);
6) отделить от отливки все литники (металл, застывший в литниковых каналах, в шлакоуловителе, стояке, чаше, выпоре), а также образовавшиеся (при некачественной заливке или формовке) приливы и заусенцы;
7) очистить отливки от налипших на их поверхность частиц формовочной или стержневой смеси (операция очистки отливок);
8) произвести внешний осмотр готовых отливок с целью выявления возможных их дефектов (процесс разбраковки отливок). Осуществить контроль качества и размеров отливок.

Последовательность изготовления отливок показана на рис. 2 и на схеме (рис. 3).

Самое главное в литейной технологии состоит в том, чтобы, во-первых, выплавить вполне качественный, обладающий необходимыми свойствами расплав и, во-вторых, приготовить надежную, стойкую, прочную и газопроницаемую литейную форму. Поэтому этапы плавки и формовки являются доминирующими в литейной технологии.

ИНСТИТУТ СОВРЕМЕННЫХ ЗНАНИЙ

ВИТЕБСКИЙ ФИЛИАЛ

Кафедра: «Информатики и управления»

Дисциплина: «Производственные технологии»

Контрольная работа

На тему: «Технология литейного
производства»


Студента II курса

Группа ЗЭ 00/4


г.Витебск


Тема: Технология литейного производства


1. Сущность литейного производства и его развитие............................... 2

2. Литье в разовые песчано-глинистые формы.......................................... 3

3. Специальные способы литья................................................................... 10

4. Литература.................................................................................................. 15



1. Сущность литейного производства и его развитие

Литейным производством называют процессы получения фасонных изделий (отливок) путем заливки расплавленного металла в полую форму, воспроизводящую форму и размеры будущей детали. После затвердевания металла в форме получается отливка - заготовка или деталь. Отливки широко применяют в машиностроении, металлургии и строительстве.

Можно получать отливки различной массы (от нескольких граммов до сотен тонн), простой и сложной формы из чугуна, стали, сплавов меди и алюминия, цинка и магния и т.д. Особенно эффективно применение отливок для получения фасонных изделий сложной конфигурации, которые невозможно или экономически нецелесообразно изготавливать другими методами обработки металлов (давлением, сваркой, резанием), а также для получения изделий из малопластичных металлов и сплавов.

При всем разнообразии приемов литья, сложившихся за длительный период развития его технологии, принципиальная схема технологического процесса литья практически не изменилась за более чем 70 веков его развития и включает четыре основных этапа: плавку металла, изготовление формы, заливку жидкого металла в форму, извлечение затвердевшей отливки из формы.

До середины нашего столетия литейный способ считался одним из важнейших методов получения фасонных заготовок. Масса литых деталей составляла около 60 % от массы тракторов и сельскохозяйственных машин, до 70 % - прокатных станов, до 85 % - металлорежущих станков и полиграфических машин. Однако наряду с такими достоинствами литейного производства, как относительная простота получения и низкая стоимость отливок (особенно из чугуна), возможность изготовления сложных деталей из хрупких металлов и сплавов, он имеет и ряд существенных недостатков: прежде всего довольно низкая производительность труда, неоднородность состава и пониженная плотность материала заготовок, а следовательно, и их более низкие, чем заготовок, полученных обработкой давлением, прочностные характеристики.

За годы XI пятилетки в СССР значительно возрос выпуск литейного оборудования. Освоено производство автоматических линий формовки, заливки и выбивки отливок, созданы комплекты современного смесеприготовительного оборудования, освоен выпуск целой гаммы машин для специальных способов литья, существенно возрос уровень механизации и автоматизации технологических процессов.

Основными направлениями экономического развития СССР на период до 2000 года предусматривается значительное ускорение развития машиностроения. Немалый вклад в решение поставленных задач может внести реконструкция и модернизация литейного производства, замена устаревшего оборудования высокопроизводительными литейными автоматами и полуавтоматами, робототехническими комплексами. Большой резерв экономии металла, снижения материалоемкости продукции машиностроения состоит в увеличении доли литья из легированных сталей и высокопрочного чугуна, а также точного литья, получаемого специальными способами.

Основными технико-экономическими показателями работы литейных цехов являются: годовой выпуск отливок в тоннах; выпуск отливок на одного работающего (производственного); съем литья с 1м 2 производственной площади цеха; выход годного металла (в процентах от массы металлозавалки и жидкого металла); доля брака литья (в процентах), уровень механизации; доля литья, получаемого специальными способами; себестоимость 1т литья.

В структуре себестоимости литья основную долю составляют затраты на металл (до 80%). Производя технико-экономический анализ литейного производства, особое внимание необходимо обращать на те стадии и элементы технологического процесса, которые непосредственно связаны с возможными потерями металла на угар, разбрызгивание, брак и т. п.

Себестоимость литья зависит от объема производства, уровня механизации и автоматизации технологических процессов.

2. Литье в разовые песчано-глинистые формы

Литье в разовые песчано-глинистые формы является наиболее распространенным и относительно простым способом получения отливок. Разовые песчано-глинистые формы могут быть приготовлены либо непосредственно в почве (в полу литейного цеха) по шаблонам, либо в специальных ящиках-опоках по моделям. В почве получают отливки крупногабаритных деталей (станин, колонн и т.д.), более мелкие отливки обычно получают в опочных формах.

Внешнее очертание отливок соответствует углублениям формы, отверстия получают за счет стержней, вставляемых в полость формы.

Технологический процесс производства отливок в опочных формах (рис.1) состоит из трех стадий: подготовительной, основной и заключительной.

Модельная оснастка, изготовленная в модельных цехах, представляет собой приспособления, с помощью которых изготовляют формы и стержни. К оснастке относятся модели деталей, подмодельные щитки, стержневые ящики, модели элементов литниковой системы и опоки.

Модели (рис.2, а) служат для получения полости в земляной форме, которая по размерам и внешним очертаниям соответствует будущей отливке. Так как металл после затвердевания усаживается (уменьшается в объеме), размеры модели делают несколько большими.

Изготовляют модели из дерева, пластмассы или металла. Выбор материала зависит от условий производства и требований, которые предъявляют к отливке в отношении точности размеров и чистоты поверхности. Для того чтобы модели легко извлекались из формы, их делают с формовочными уклонами и часто разъемными, из двух и более частей, легко скрепляемых при помощи шипов.

Для получения отливок с отверстиями или углублениями на моделях в соответствующих местах предусматривают выступы - стержневые знаки, которые оставляют в форме отпечатки для установки стержней. Место, занимаемое в форме стержнем, не заполняется металлом и в отливке после удаления стержня образуется отверстие или углубление. Стержни изготовляют из особой стержневой смеси, набивая ее вручную или машинным способом в стержневые ящики (рис.2, б). При этом учитывают изменение размеров отливки при затвердевании металла. Размеры стержней должны быть меньше отверстий на величину усадки металла. В зависимости от сложности изготовления стержневые ящики делают цельными и разъемными. При небольших партиях стержней ящики делают из дерева, в массовом производстве, особенно при повышенных требованиях к точности литья, применяют металлические ящики (чугунные или из алюминиевых сплавов).

Модели литниковой системы предназначены для образования в форме каналов и полостей, служащих для подачи металла, задержки шлака и выхода воздуха из полости формы (рис.2, в). Устройство литниковой системы обеспечивает спокойное, безударное поступление металла в форму, предохраняя ее от повреждения.

Подмодельные щитки-плиты служат для размещения на них моделей и установки опоки при изготовлении литейной формы вручную.

В массовом производстве при машинной формовке эффективно применение тщательно обработанных деревянных или металлических модельных плит с прочно укрепленными на них или выполненными за одно целое, моделями деталей и элементами литниковой системы (рис.2, г).

Опоки - деревянные или металлические рамки, каркасы, основное назначение которых состоит в удерживании песчано-глинистой смеси, обеспечении достаточной прочности и жесткости формы при ее изготовлении, транспортировке и заливке металла.

Формовочные и стержневые смеси в основном состоят из кварцевого песка определенной зернистости и жароупорности.

Рис.1 Технологический процесс производства отливок в опочных формах


Формовочные и стержневые смеси должны обладать пластичностью и газопроницаемостью, а формы и стержни, изготовленные из них,- достаточной прочностью. Эти свойства достигаются добавкой к основному материалу глины, льняного масла, декстрина, жидкого стекла, а также деревянных опилок или торфяной крошки. Увлажненная глина добавляется как связующее вещество.

Опилки, торфяная крошка, выгорая после заливки металла в формы, образуют дополнительные поры, увеличивающие газопроницаемость смеси.


Рис.2 Модельная оснастка:

а – модель детали; б – стержневой ящик; в – модель литниковой системы;
г – подмодельная плита; д – опока.


Масляные крепители (олифа, льняное масло) обычно добавляют в стержневые смеси, которые должны обладать более высокой, по сравнению с формовочными, прочностью. Приготовление формовочных и стержневых смесей производится в землеприготовительных отделениях литейного цеха и включает операции предварительной подготовки (подсушивания, помола), дозирования исходных материалов и тщательного перемешивания их до получения однородного состава. В современных литейных цехах эти операции механизированы. Приготовленные смеси подвергают вылеживанию в бункере для более равномерного распределения влаги, а затем после разрыхления и контроля полученных свойств, транспортируют к рабочим местам формовщиков.

По назначению формовочные смеси подразделяют на облицовочные, наполнительные и единые. Облицовочные смеси, непосредственно соприкасающиеся с жидким металлом, приготавливают из более качественных свежих материалов. Наполнительной служит бывшая в употреблении (горелая) смесь. В массовом производстве формы изготовляют из единой смеси, материалом для которой является бывшая в употреблении смесь со свежими добавками песка, глины, крепителей и пр.

Изготовление стержней может производиться набивкой стержневой смеси в ящик и трамбовкой вручную или машинным способом. Машинное приготовление стержней осуществляется на прессовых, встряхивающих, пескометных и других стержневых машинах. В массовом производстве стержни изготовляют на поточных линиях, состоящих из стержневых машин, сушильных печей и различных транспортирующих устройств. Отформованные сырые стержни сушат при температуре 160...300 °С в сушильных печах или камерах для придания им высокой прочности.

В последнее время на большинстве заводов применяется метод изготовления стержней из быстросохнущих смесей на жидком стекле. Сушка или химическое твердение стержней в этом случае достигается продувкой их углекислым газом в течение двух-трех минут. На некоторых заводах внедрена скоростная сушка стержней с помощью токов высокой частоты.

Применение указанных методов сушки способствует сокращению производственного цикла изготовления отливок в 2...5 раз, увеличению съема отливок с Гм 2 производственной площади цеха, снижению расходов на транспорт и энергию.


Рис.3 Технологический процесс формовки втулки


Формовка - наиболее сложная и трудоемкая операция производства отливок в разовых песчано-глинистых формах. Трудоемкость изготовления литейных форм составляет 40...60 % от общей трудоемкости получения отливок.

В условиях массового и крупносерийного производства мелких и средних по массе отливок применяется машинная формовка. Ручная формовка находит применение в индивидуальном и мелкосерийном производстве, а также при производстве крупных отливок. Понятие «ручная формовка» несколько устарело, так как многие работы (подача формовочной смеси, трамбовка, извлечение моделей, поворот и перемещение опок) в настоящее время механизированы.

Рассмотрим последовательность ручной формовки для отливок детали типа втулки.

На подмодельный щит 3 (рис.3, а) укладывается половина модели 2 и устанавливается нижняя опока, затем сквозь сито 4 на поверхность модели наносится противопригарный припыл - древесно-угольная пыль, графитовый порошок (рис.3, б). Лопатой 5 наносят на модель облицовочную формовочную смесь, а затем засыпают всю опоку наполнительной формовочной смесью (рис.3, в). Ручной или пневматической трамбовкой 6 уплотняют смесь (рис.3, г), сгребают ее остатки и накалывают душником (шилом) 7 отверстия для лучшего выхода газов (рис.3, д). Затем нижнюю опоку с заформованной моделью переворачивают на 180° устанавливают вторую половину модели 8 и верхнюю опоку 9 (рис.3, е). После установки моделей литниковой системы 10 в той же последовательности заформовывают верхнюю опоку (рис.3, ж). По окончании формовки опоки разнимают, осторожно удаляют модели, поправляют обрушившиеся места формы припыливают ее изнутри и, уложив в нижнюю полуформу на место знаков 11 стержень 12 (рис.3, з), вновь устанавливают верхнюю полуформу на нижнюю и скрепляют их при помощи болтов, струбцин или просто придавливают грузом, чтобы предотвратить прорыв металла по плоскости разъема формы. В таком виде литейная форма готова для заливки металла.

Для получения крупных отливок полуформы перед сборкой сушат при температуре 350 °С в течение 6...20 ч в зависимости от габаритов формы.

Машинная формовка экономически целесообразна в условиях серийного и массового производства, когда формовочные машины загружены в течение не менее 40...60 % рабочего времени. Однако опыт передовых заводов нашей страны показывает, что машинная формовка экономически оправдывает себя и в индивидуальном производстве, если применяются быстросменные модельные плиты. В этом случае смена моделей производится за 1,5...2 мин, т.е. за короткое время можно перестраиваться на получение новых отливок.

Сущность машинной формовки заключается в механизации основных операций: установки модельных плит и опок, наполнения опок формовочной смесью, уплотнения смеси и удаления моделей из форм. Отдельные конструкции формовочных машин позволяют также механизировать некоторые вспомогательные операции: поворот опок, снятие готовых полуформ со стола машины, передачу их на сборку и т. п.

По способу уплотнения смеси формовочные машины делятся на прессовые, встряхивающие, пескометные (рис.4) и комбинированные (встряхивающие с подпрессовкой или прессовые с вибратором).

Прессовые машины являются наиболее простыми и производительными, но дают неравномерное уплотнение смеси по высоте опоки, встряхивающие машины менее производительны, но в сочетании с подпрессовкой позволяют более равномерно уплотнять землю даже в высоких и больших по площади опоках. Пескометы применяют для набивки средних и крупных опок. Они отличаются большой производительностью (до 50...70 м 3 /ч) и обеспечивают наиболее равномерное уплотнение земли по высоте опоки.

Формовочные машины, объединенные транспортными устройствами с другими машинами и механизмами, позволяют создавать поточные (механизированные, полуавтоматические и автоматические) участки формовки.

Рис.4 Формовочные машины:

а – прессовые; б – встряхивающие; в – пескометные.


Машинная формовка не только облегчает труд рабочих-формовщиков, но и дает возможность повышать производительность труда, получать более точные отливки с меньшими припусками на механическую обработку, снижать брак.

В общей трудоемкости изготовления отливок на процессы плавки и заливки металла в формы приходится около 7...10 %. Тем не менее, эти процессы являются особо ответственными, так как оказывают решающее влияние на качество и себестоимость отливок.

Важнейшими литейными сплавами являются чугун (серый, высокопрочный), сталь (углеродистая, легированная), медные сплавы (бронза, латунь), алюминиевые, магниевые, цинковые сплавы и др.

Наилучшим комплексом литейных свойств обладают серый чугун, бронза, сплавы алюминия с кремнием (силумины). Плавка чугуна производится преимущественно в вагранках и шахтных печах. Вагранка представляет собой вертикальную шахту-печь непрерывного действия, работающую на литейном каменноугольном коксе и воздушном дутье. Производительность вагранки в зависимости от ее размеров составляет 1...30 т/ч, максимально достижимая температура- 3400...1420 °С. Интенсификация процесса плавки в вагранке осуществляется применением горячего (400...500 °С) дутья воздухом, обогащенным кислородом.

В последнее время получили распространение коксогазовые и газовые вагранки, которые позволяют еще более повысить технико-экономические показатели процессов за счет улучшения качества металла, лучшего использования шихтовых материалов и снижения продолжительности плавки.

Индукционные печи для выплавки чугуна, работающие на токах промышленной частоты, являются наиболее перспективными плавильными агрегатами. Их применение позволяет выплавлять чугун однородного состава с высокими механическими свойствами и тем самым значительно снизить массу отливок. Высокая температура нагрева в индукционных печах дает возможность использовать недорогостоящие стальные отходы и путем науглероживания их получать чугун необходимого химического состава.

В цехах крупного и среднего литья из углеродистой и низколегированной стали (частично высоколегированной) применяются кислые и основные мартеновские печи емкостью до 80 т, Для получения мелких и средних отливок из углеродистой и низколегированной стали используются электродуговые печи, для неответственных отливок - малые бессемеровские конвертеры, чугун в которые поступает из вагранок. В цехах особо ответственного стального литья применяются индукционные высокочастотные печи и установки электрошлакового переплава.

Сплавы цветных металлов в зависимости от их свойств (температуры плавления, химической активности и т, п.) и масштабов производства плавятся в тигельных печах, пламенных и электрических отражательных печах, индукционных, вакуумно-дуговых, вакуумных электронно-лучевых печах.

Все плавильные агрегаты, применяемые в литейном производстве, должны отвечать определенным общим требованиям: обеспечивать необходимую для расплавления и перегрева металла температуру, обладать достаточной производительностью, быть экономичными (минимальный расход топлива и энергии на 1т жидкого металла и минимальный угар металла), более или менее надежно предохранять расплавленный металл от загрязнения газами и неметаллическими включениями.

На участок заливки форм расплавленный металл подается в разливочных ковшах различной вместимости.

Качество отливок во многом зависит от соблюдения правил заливки. Металл в форму заливают плавно, непрерывной струей до тех пор, пока он не покажется в выпорах и прибылях. Температура заливки всегда выше температуры плавления сплава, однако, перегрев его должен быть минимальным для обеспечения хорошего заполнения формы. При слишком высокой температуре заливки происходит обильное газовыделение, формовочная смесь пригорает к поверхности отливки, увеличивается ее усадка. Контроль температуры заливаемого металла осуществляется оптическими пирометрами или термопарами.

После затвердевания и охлаждения до определенной температуры, при которой отливки приобретают достаточную механическую прочность, производится выбивка их из форм; стержни выбиваются позднее, после дополнительного охлаждения отливок.

Выбивка отливок - одна из самых тяжелых операций литейного производства, сопровождающаяся большими выделениями теплоты и пыли. По трудоемкости операции выбивки, обрубки и очистки составляют 30.. .40 % от общей трудоемкости изготовления отливок.

Сущность процесса выбивки заключается в разрушении формы, освобождении отливок от окружающей их формовочной земли. В современных литейных цехах процесс выбивки механизирован и осуществляется на различных вибрационных машинах, чаще всего, на встряхивающих решетках. Формовочная смесь проваливается через решетку, попадает на ленточный конвейер и транспортируется в формовочное отделение для повторного использования.

После выбивки производится обрубка и очистка отливок. Обрубка заключается в отделении от отливок прибылей, выпоров и заливов.

Обрубка - тяжелая операция, трудно поддающаяся механизации. Ее производят с помощью пневматических зубил, ленточных и дисковых пил, прессов, газовой резки.

Очистка отливок, осуществляемая после обрубки, заключается в удалении пригара формовочной земли (корки), окалины, мелких заусениц. Основная цель очистки - уменьшение трудоемкости последующей механической обработки и снижение интенсивности изнашивания режущего инструмента. Очистку отливок от пригоревшей земли и окалины производят во вращающихся (галтовочных) барабанах, на пескогидравлических и дробеметных аппаратах, а также химической и электрохимической обработкой внутренних поверхностей отливок, труднодоступных при других способах очистки.

Зачистка мелких заусениц, неровностей, оставшихся после обрубки, производится на переносных и стационарных шлифовальных станках крупнозернистыми абразивными кругами.

Перед отправкой в механические цехи стальные отливки обязательно подвергаются термической обработке - отжигу или нормализации-для снятия внутренних напряжений и измельчения зерна металла. В отдельных случаях термической обработке подвергаются отливки и из других сплавов.

Брак может возникать по различным причинам на всех стадиях литейного производства, при этом бывает брак исправимый и неисправимый. Основными видами дефектов в отливках являются: коробление; газовые, усадочные, земельные и шлаковые раковины; трещины; недолив металла и спай; отбел поверхности (У чугунных отливок). Поверхностные неглубокие дефекты устраняются заваркой, запрессовкой (эпоксидными смолами), металлизацией. Коробление иногда можно исправить правкой. Отбел ликвидируют дополнительным отжигом отливок.

При внутренних и глубоких наружных дефектах отливки отправляют на переплавку. Годные отливки направляют в механические цехи для дальнейшей обработки или на склад готовой продукции.

3. Специальные способы литья

В последние годы в литейном производстве повсеместно внедряются специальные способы литья, имеющие ряд преимуществ по сравнению с традиционным литьем в разовые песчано-глинистые формы. Удельный вес отливок, получаемых специальными способами, неуклонно увеличивается.

К специальным способам относят литье: а) в постоянные металлические формы (кокиль), б) центробежное, в) под давлением, г) в тонкостенные разовые формы, д) по выплавляемым моделям, е) корковое, или оболочковое, ж) электрошлаковое литье.

Специальные способы литья позволяют получать отливки более точных размеров с хорошим качеством поверхности, что способствует уменьшению расхода металла и трудоемкости механической обработки; повысить механические свойства отливок и уменьшить потери от брака; значительно снизить или исключить расход формовочных материалов; сократить производственные площади; улучшить санитарно-гигиенические условия и повысить производительность труда. ...

Большинство операций при специальных способах литья легко поддается механизации и автоматизации.

Экономическая целесообразность замены литья в разовые песчано-глинистые формы тем или иным специальным способом зависит от масштаба производства, формы и размеров отливок, применяемых литейных сплавов и т.п. Она определяется на основе тщательного технико-экономического анализа всех затрат, связанных с новым технологическим процессом.

Одним из наиболее распространенных является литье в кокиль . Кокилем называют цельную или разъемную металлическую форму, изготовленную из чугуна или стали.

Кокили предназначены для получения большого количества одинаковых отливок из цветных или железоуглеродистых сплавов. Стойкость кокилей зависит от материала и размеров отливки и самого кокиля, а также от соблюдения режима его эксплуатации. Ориентировочно стойкость чугунных кокилей составляет 200000 оловянно-свинцовых, 150000 цинковых, 50000 алюминиевых или 100...5000 чугунных отливок. Кокили целесообразно применять как в массовом, так и в серийном производстве (при партии отливок не менее 300...500 штук).

Перед заливкой металла кокили подогревают до температуры 100...300 °С, а рабочие поверхности, контактирующие с расплавленным металлом, покрывают защитными обмазками. Покрытие обеспечивает увеличение срока службы кокиля, предупреждение приваривания металла к стенкам кокиля и облегчение извлечения отливок. Подогрев предохраняет кокиль от растрескивания и облегчает заполнение формы металлом. В процессе работы необходимая температура кокиля поддерживается за счет теплоты, выделяемой заливаемым металлом. После затвердевания отливку извлекают вытряхиванием или при помощи выталкивателя.

Кокильное литье позволяет снизить расход металла на прибыли и выпоры, получать отливки более высокой точности и чистоты поверхности, улучшить их физико-механические свойства. Вместе с тем этот способ литья имеет и недостатки. Быстрое охлаждение металла затрудняет получение тонкостенных отливок сложной формы, вызывает опасность появления у чугунных отливок отбеленных труднообрабатываемых поверхностей.

Литье под давлением - один из наиболее производительных методов получения точных фасонных отливок из цветных металлов. Сущность способа заключается в том, что жидкий или кашицеобразный металл заполняет форму и кристаллизуется под избыточным давлением, после чего форму раскрывают и отливку удаляют.

По способу создания давления различают: литье под поршневым и газовым давлением, вакуумное всасывание, жидкую штамповку.

Наиболее распространено формообразование отливок под поршневым давлением - в машинах с горячей или холодной камерой сжатия. Сплавы, применяемые для литья под давлением, должны обладать достаточной жидкотекучестью, узким температурно-временным интервалом кристаллизации и химически не взаимодействовать с материалом пресс-форм. Для получения отливок рассматриваемым способом используют цинковые, магниевые, алюминиевые сплавы и сплавы на основе меди (латуни).

Литьем под давлением производят детали приборов: барабанчики счетных машин, корпусы фотоаппаратов и корпусные детали массой до 50 кг, головки цилиндров мотоциклетных двигателей. В отливках можно получать отверстия, надписи, наружную и внутреннюю резьбу.

Рис.5 Специальные способы литья

а – под давлением; б – центробежный.


На рис.5, а показана последовательность получения отливки на поршневой машине (с холодной вертикальной камерой сжатия). Расплавленный металл подается порцией в вертикальную камеру прессования 2. При движении вниз поршень 1 давит на металл, перемещает вниз пяту 4, в результате чего открывается питательный канал 3 и металл поступает в полость пресс-формы 5. После заполнения пресс-формы и выдержки в течение 3...30 с поршень и пята поднимаются, при этом пята отрезает литник и выталкивает пресс-остаток б. Подвижная часть пресс-формы 8 отходит вправо, и отливка 7 легко извлекается. Внутренние полости и отверстия в отливках выполняются с помощью металлических стержней.

Перед началом работы пресс-форму подогревают и смазывают. В процессе работы поддерживается необходимая температура и пресс-форма периодически смазывается.

Пресс-формы изготовляют из легированных инструментальных сталей (3Х2В8, ХВГ, Х12М и др.) и подвергают закалке с высоким отпуском. Стоимость пресс-формы в 3...5 раз превышает стоимость кокиля.

Стойкость пресс-форм в зависимости от размеров и формы отливок составляет при литье из цинковых сплавов 300...500 тыс. отливок, из алюминиевых - 30...50 тыс., медных - 5...20 тыс. отливок. Производительность поршневых машин достигает 500 отливок в час.

В условиях массового производства экономически оправдано применение литья под давлением, так как этот способ позволяет снизить трудоемкость получения отливок в 10...12 раз, а трудоемкость механической обработки - в 5...8 раз.

За счет высокой точности изготовления и обеспечения повышенных механических свойств отливок, полученных под давлением, достигается экономия до 30...50 % металла по сравнению с литьем в разовые формы. Создается возможность полной автоматизации процесса.

Центробежный способ литья применяется главным образом для получения полых отливок типа тел вращения (втулок, обечаек для поршневых колец, труб, гильз) из цветных и железоуглеродистых сплавов, а также биметаллов. Сущность способа состоит в заливке жидкого металла во вращающуюся металлическую или керамическую форму (изложницу). Жидкий металл за счет центробежных сил отбрасывается к стенкам формы, растекается вдоль них и затвердевает.

Длинные трубы и гильзы отливают на машинах с горизонтальной осью вращения, короткие втулки, венцы большого диаметра - на машинах с вертикальной осью вращения.

При рассматриваемом способе литья отливки получаются плотными, очищенными от газов и неметаллических включений, с мелкозернистой структурой.

Центробежное литье высокопроизводительно (за I ч можно отлить 40...50 чугунных труб диаметром 200...300 мм), дает возможность получать полые отливки без применения стержней и биметаллические отливки последовательной заливкой двух сплавов (например, стали и бронзы).

Как и при кокильном литье, металлические формы перед заливкой жидкого металла подогреваются и на них наносятся защитные покрытия. После заливки формы иногда охлаждают водяным душем для увеличения производительности машин и предохранения их от перегрева.

Наряду с высокой производительностью и простотой процесса центробежный способ литья по сравнению с литьем в стационарные песчано-глинистые и металлические формы обеспечивает более высокое качество отливок, почти устраняет расход металла на прибыли и выпоры, увеличивает выход годного литья на 20...60 %.

К недостаткам способа следует отнести высокую стоимость форм и оборудования и ограниченность номенклатуры отливок.

Литье по выплавляемым (вытапливаемым) моделям состоит в следующем. Металл заливают в разовую тонкостенную керамическую форму, изготовленную по моделям (также разовым) из легкоплавящегося модельного состава. Этим способом получают точные, практически не требующие, механической обработки отливки из любых сплавов массой от нескольких граммов до 100 кг.

Точность размеров и чистота поверхности получаемых отливок таковы, что позволяют сократить объем механической обработки или отказаться от нее, что особенно важно при изготовлении деталей из труднообрабатываемых сплавов;

Технология, производства отливок по выполняемым моделям включает следующие этапы: изготовление пресс-форм для моделей; получение восковых моделей запрессовкой модельного состава в пресс-формы; сборка блока моделей на общий питатель (в случае мелких отливок); нанесение огнеупорного покрытия на поверхность единичной модели или блока; вытапливание моделей из огнеупорных (керамических) оболочек-форм; прокаливание форм; заливка металла в горячие формы.

Разъемные пресс-формы изготовляют из стали или других сплавов по чертежу детали или ее эталону с учетом усадки модельной массы и металла отливки.

Модельный состав (например, из парафина с добавками церезина, нефтяного битума, канифоли, полиэтилена) в пастообразном состоянии запрессовывают с помощью шприца или на запрессовочном станке.

Полученные модели извлекают из пресс-форм и облицовывают в несколько слоев огнеупорным покрытием, окуная несколько раз в связующий состав и обсыпая кварцевым песком. Каждый слой покрытия подсушивается. Модель мелких отливок перед нанесением покрытия собирают в блоки, соединяя их (припаивая) с общей литниковой системой, а затем облицовывают блок.

Вытапливание моделей из керамических оболочек производится горячим воздухом или горячей водой. Модельный материал собирается для повторного использования, а полученная керамическая литейная форма с гладкой рабочей поверхностью поступает на прокаливание. Последнее необходимо для придания форме механической прочности и окончательного удаления модельного материала. Форму помещают в стальной ящик, засыпают кварцевым песком, оставляя литниковую чашу доступной для заливки металла, и прокаливают при температуре 850...900 °С.

Заливка металла производится в горячую форму, что способствует улучшению жидкотекучести металла и позволяет получать сложнейшие тонкостенные отливки.

После охлаждения отливку очищают от слоя огнеупорного покрытия ударами вручную или на пневмовибраторах. В полостях и отверстиях остатки формы удаляются выщелачиванием в кипящем растворе едкого натра, затем отливку промывают в теплой воде с добавлением соды.

Отделение литниковой системы от отливок может производиться на токарных и фрезерных станках, вулканитовыми абразивными кругами и на вибрационных установках.

Литьем по выплавляемым моделям получают разнообразные сложные отливки для автотракторостроения, приборостроения, для изготовления деталей самолетов, лопаток турбин, режущих и измерительных инструментов.

Стоимость 1т отливок, получаемых по выплавляемым моделям, выше, чем изготовляемых другими способами, и зависит от многих факторов (серийности выпуска деталей, уровня механизации и автоматизации литейных процессов и процессов механической обработки отливок).

В большинстве случаев снижение трудоемкости механической обработки, расхода металла и металлорежущего инструмента при применении точных отливок взамен поковок или отливок, полученных другими способами, дает значительный экономический эффект. Наибольший эффект достигается при переводе на литье по выплавляемым моделям деталей, в структуре себестоимости которых большую долю составляют затраты на металл и фрезерную обработку, особенно при применении труднообрабатываемых конструкционных и инструментальных материалов.

Внедрению литья по выплавляемым моделям уделяется большое внимание, так как большинство операций легко поддается механизации и автоматизации. Совместными усилиями работников научно-исследовательских институтов и передовых заводов создаются высокоэффективные автоматические линии и автоматизированные цехи для литья по выплавляемым моделям.

Литье в оболочковые формы применяется для получения отливок массой до 100 кг из чугуна, стали и цветных металлов. Тонкостенные (толщина стенки 6...10 мм) формы изготовляют из песчано-смоляной смеси: мелкозернистого кварцевого песка и термореактивной синтетической смолы (3...7 %). Песчано-смоляную смесь готовят перемешиванием песка и измельченной порошкообразной смолы с добавкой растворителя (холодный способ) или при температуре 100...120 °С (горячий способ), в результате чего смола обволакивает (плакирует) зерна песка. Затем смесь дополнительно дробится до получения отдельных зерен, плакированных смолой, и загружается в бункер. Формовка производится по металлическим моделям.

Модель в литниковой системе закрепляют на подмодельной плите, нагревают до температуры 200...250 °С и наносят на их рабочую поверхность тонкий слой разделительного состава. После этого модельной плитой закрывают горловину бункера (модель внутри) и поворачивают его на 180°. Смесь падает на нагретую модель, смола плавится и через 15...25 с на модели образуется оболочка (полуформа) нужной толщины. Бункер снова поворачивают на 180°, оставшаяся смесь осыпается на дно бункера, а модельная плита с полутвердой оболочкой помещается в печь для окончательного твердения при температуре 300...400 °С в течение 40...60 с. При помощи специальных выталкивателей полуформа легко снимается с модели.

Скрепление (сборка) полуформ осуществляется металлическими скобами, струбцинами или быстротвердеющим клеем. Аналогичным способом изготовляют песчано-смоляные стержни для пустотелых отливок.

Собранные оболочковые формы для придания им большей жесткости помещают в опоки, засыпают снаружи чугунной дробью или сухим песком и заливают металлом, После затвердевания отливки оболочковая форма легко разрушается.

Отливки, изготовленные в оболочковых формах, отличаются большой точностью и чистотой поверхности, что позволяет на 20...40 % снизить массу отливок и на 40...60 % трудоемкость их механической обработки. По сравнению с литьем в песчано-глинистые формы трудоемкость изготовления отливок снижается в несколько раз. Этим способом получают ответственные детали машин- коленчатые и кулачковые валы, шатуны, ребристые цилиндры и т. п. Процессы изготовления оболочек легко поддаются автоматизации.

Несмотря на большую стоимость песчано-смоляной смеси, по сравнению с песчано-глинистой, при массовом и серийном производстве отливок достигается значительный экономический эффект.

Литье в оболочковые формы применяют для изготовления деталей преимущественно из сплавов на основе железа (чугуна, углеродистой и нержавеющей стали), а также из медных и специальных сплавов.

На Киевском мотоциклетном заводе так отливают ребристые цилиндры из модифицированного хромоникелевого чугуна, на Горьковском автозаводе в оболочковых формах получают коленчатые залы из высокопрочного чугуна.

Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.